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Getting Started

What Is the Optimization Toolbox? 
(p. 1-2)

Introduces the toolbox and describes the types of 
problems it is designed to solve.

Optimization Example (p. 1-3) Presents an example that illustrates how to use the 
toolbox.
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What Is the Optimization Toolbox?
The Optimization Toolbox is a collection of functions that extend the capability 
of the MATLAB® numeric computing environment. The toolbox includes 
routines for many types of optimization including

• Unconstrained nonlinear minimization

• Constrained nonlinear minimization, including goal attainment problems, 
minimax problems, and semi-infinite minimization problems

• Quadratic and linear programming

• Nonlinear least squares and curve-fitting

• Nonlinear system of equation solving

• Constrained linear least squares

• Sparse and structured large-scale problems

All the toolbox functions are MATLAB M-files, made up of MATLAB 
statements that implement specialized optimization algorithms. You can view 
the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Optimization Toolbox by writing your 
own M-files, or by using the toolbox in combination with other toolboxes, or 
with MATLAB or Simulink®.



Optimization Example
Optimization Example
This section presents an example that illustrates how to solve an optimization 
problem using the toolbox function lsqlin, which solves linear least squares 
problems. This section covers the following topics:

• “The Problem” on page 1-3

• “Setting Up the Problem” on page 1-3

• “Finding the Solution” on page 1-4

• “More Examples” on page 1-5

The Problem
The problem in this example is to find the point on the plane 

 that is closest to the origin. The easiest way to solve this 
problem is to minimize the square of the distance from a point  
on the plane to the origin, which returns the same optimal point as minimizing 
the actual distance. Since the square of the distance from an arbitrary point 

 to the origin is , you can describe the problem as 
follows:

subject to the constraint

The function f(x) is called the objective function and  is an 
equality constraint. More complicated problems might contain other equality 
constraints, inequality constraints, and upper or lower bound constraints.

Setting Up the Problem
This section shows how to set up the problem before applying the function 
lsqlin, which solves linear least squares problems of the form

x1 2x2 4x3+ + 7=
x x1 x2 x3, ,( )=

x1 x2 x3, ,( ) x1
2 x2

2 x3
2+ +

minimize
x

f x( ) x1
2 x2

2 x3
2+ +=

x1 2x2 4x3+ + 7=

x1 2x2 4x3+ + 7=

minimize
x

f x( ) Cx d– 2=
1-3



1 Getting Started

1-4
where  is the norm of Cx - d squared, subject to the constraints

To set up the problem, you must create variables for the parameters C, d, A, b, 
Aeq, and beq. lsqlin accepts these variables as input arguments with the 
following syntax:

x = lsqlin(C, d, A, b, Aeq, beq)

To create the variables, do the following steps:

1. Create Variables for the Objective Function
Since you want to minimize , you can set C to be the 3-by-3 
identity matrix and d to be a 3-by-1 vector of zeros, so that Cx - d = x.

C = eye(3);
d = zeros(3,1);

2. Create Variables for the Constraints
Since this examples has no inequality constraints, you can set A and b to be 
empty matrices in the input arguments.

You can represent the equality constraint  in matrix form as

where Aeq = [1 2 4] and beq = [7]. To create variables for Aeq and beq, enter

Aeq = [1 2 4];
beq = [7];

Finding the Solution
To solve the optimization problem, enter

[x, fval] =lsqlin(C, d, [], [], Aeq, beq)

Cx d– 2

Ax b≤
Aeq x⋅ beq=

x1
2 x2

2 x3
2+ + x 2=

x1 2x2 4x3+ + 7=

Aeq x⋅ beq=
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lsqlin returns

x =

    0.3333
    0.6667
    1.3333

fval =

    2.3333

The minimum occurs at the point x and fval is the square of the distance from 
x to the origin.

Note  In this example, lsqlin issues a warning that it is switching from its 
default large-scale algorithm to its medium-scale algorithm. This message has 
no bearing on the result, so you can safely ignore it. “Using the Optimization 
Functions” on page 2-6 provides more information on large and medium-scale 
algorithms.

More Examples
The following sections contain more examples of solving optimization 
problems:

• “Examples That Use Standard Algorithms” on page 2-9

• “Large-Scale Examples” on page 2-40
1-5
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2

Tutorial

The Tutorial provides information on how to use the toolbox functions. It also provides examples for 
solving different optimization problems. It consists of these sections.

Introduction (p. 2-3) Summarizes, in tabular form, the functions available for 
minimization, equation solving, and solving least-squares 
or data fitting problems. It also provides basic guidelines 
for using the optimization routines and introduces the 
algorithms and line-search strategies that are available 
for solving medium- and large-scale problems.

Examples That Use Standard 
Algorithms (p. 2-9)

Presents medium-scale algorithms through a selection of 
minimization examples. These examples include 
unconstrained and constrained problems, as well as 
problems with and without user-supplied gradients. This 
section also discusses maximization, greater-than-zero 
constraints, passing additional arguments, and 
multiobjective examples.

Large-Scale Examples (p. 2-40) Presents large-scale algorithms through a selection of 
large-scale examples. These examples include specifying 
sparsity structures, and preconditioners, as well as 
unconstrained and constrained problems.

Default Options Settings (p. 2-76) Describes the use of default options settings and tells you 
how to change them. It also tells you how to determine 
which options are used by a specified function, and 
provides examples of setting some commonly used 
options.

Displaying Iterative Output (p. 2-79) Describes the column headings used in the iterative 
output of both medium-scale and large-scale algorithms.

Calling an Output Function Iteratively 
(p. 2-85)

Describes how to make an optimization function call an 
output function at each iteration.
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Optimizing Anonymous Functions 
Instead of M-Files (p. 2-90)

Tells you how to represent a mathematical function at the 
command line by creating an anonymous function from a 
string expression.

Typical Problems and How to Deal 
with Them (p. 2-92)

Provides tips to help you improve solutions found using 
the optimization functions, improve efficiency of the 
algorithms, overcome common difficulties, and transform 
problems that are typically not in standard form.

Selected Bibliography (p. 2-96) Lists published materials that support concepts 
implemented in the Optimization Toolbox.



Introduction
Introduction
Optimization is the process of finding the minimum or maximum of a function, 
usually called the objective function. The Optimization Toolbox consists of 
functions that perform minimization (or maximization) on general nonlinear 
functions. Functions for nonlinear equation solving and least-squares 
(data-fitting) problems are also provided.

This introduction includes the following sections:

• Problems Covered by the Toolbox

• Using the Optimization Functions

Problems Covered by the Toolbox
The following tables show the functions available for minimization, equation 
solving, and solving least-squares or data-fitting problems.

Note  The following tables list the types of problems in order of increasing 
complexity.

Table 2-1:  Minimization

Type Notation Function

Scalar Minimization  such that fminbnd

Unconstrained Minimization fminunc,
fminsearch

Linear Programming   such that linprog

f a( )
a

min a1 a a2≤ ≤

f x( )
x

min

fTx
x

min

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤
2-3
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Quadratic Programming   such that quadprog

Constrained Minimization   such that fmincon

Goal Attainment   such that fgoalattain

Minimax   such that fminimax

Semi-Infinite Minimization   such that fseminf

Table 2-1:  Minimization (Continued)

Type Notation Function

1
2
---xTHx fTx+

x
min

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

f x( )
x

min

c x( ) 0≤ ceq x( ), 0=
A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

γ
x γ,
min

F x( ) wγ– goal≤
c x( ) 0≤ ceq x( ), 0=
A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

min
x

max
Fi{ }

Fi x( ){ }

c x( ) 0≤ ceq x( ), 0=
A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

f x( )
x

min

K x w,( ) 0≤ for all w
c x( ) 0≤ ceq x( ), 0=
A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤
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Table 2-2:  Equation Solving

Type Notation Function

Linear Equations , n equations, n variables \ (slash)

Nonlinear Equation of One 
Variable

fzero

Nonlinear Equations , n equations, n variables fsolve

C x⋅ d=

f a( ) 0=

F x( ) 0=

Table 2-3:  Least-Squares (Curve Fitting)

Type Notation Function

Linear Least-Squares , m equations, n variables \ (slash)

Nonnegative 
Linear-Least-Squares

such that lsqnonneg

Constrained 
Linear-Least-Squares

such that 

 

lsqlin

Nonlinear Least-Squares such that lsqnonlin

Nonlinear Curve Fitting such that lsqcurvefit

C x⋅ d– 2

x
min 2

C x⋅ d– 2

x
min 2 x 0≥

C x⋅ d– 2

x
min 2

A x⋅ b Aeq x⋅ beq l x u≤ ≤,=,≤

1
2
--- F x( ) 2

2

x
min 1

2
--- Fi x( )2

i
∑= l x u≤ ≤

1
2
--- F x xdata,( ) ydata– 2

2

x
min l x u≤ ≤
2-5
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Using the Optimization Functions
This section provides some basic information about using the optimization 
functions.

Defining the Objective Function
Many of the optimization functions require you to create a MATLAB function 
that computes the objective function. The function should accept vector inputs 
and return a scalar output of type double. There are two ways to create the 
objective function:

• Create an anonymous function at the command line. For example, to create 
an anonymous function for x2, enter
square = @(x) x.^2;

You then call the optimization function with square as the first input 
argument. You can use this method if the objective function is relatively 
simple and you do not need to use it again in a future MATLAB session.

• Write an M-file for the function. For example, to write the function x2 as a 
M-file, open a new file in the MATLAB editor and enter the following code:

function y = square(x)
y = x.^2;

You can then call the optimization function with @square as the first input 
argument. The @ sign creates a function handle for square. Use this method 
if the objective function is complicated or you plan to use it for more than one 
MATLAB session.

Note  The functions in the Optimization Toolbox only accept inputs of type 
double, so the objective function must return a scalar output of type double. 

Maximizing Versus Minimizing
The optimization functions in the toolbox minimize the objective function. To 
maximize a function f, apply an optimization function to minimize -f. The 
resulting point where the maximum of f occurs is also the point where the 
minimum of -f occurs.
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Changing Options
You can change the default options for an optimization function by passing in 
an options structure, which you create using the function optimset, as an 
input argument. See “Default Options Settings” on page 2-76 for more 
information.

Supplying the Gradient
Many of the optimization functions use the gradient of the objective function to 
search for the minimum. You can write a function that computes the gradient 
and pass it to an optimization function using the options structure. 
“Constrained Example with Gradients” on page 2-14 provides an example of 
how to do this. Providing a gradient function improves the accuracy and speed 
of the optimization function. However, for some objective functions it might not 
be possible to provide a gradient function, in which case the optimization 
function calculates it using an adaptive finite-difference method.

Medium- and Large-Scale Algorithms
This guide separates “medium-scale” algorithms from “large-scale” algorithms. 
Medium-scale is not a standard term and is used here only to distinguish these 
algorithms from the large-scale algorithms, which are designed to handle 
large-scale problems efficiently.

Medium-Scale Algorithms
The Optimization Toolbox routines offer a choice of algorithms and line search 
strategies. The principal algorithms for unconstrained minimization are the 
Nelder-Mead simplex search method and the BFGS (Broyden, Fletcher, 
Goldfarb, and Shanno) quasi-Newton method. For constrained minimization, 
minimax, goal attainment, and semi-infinite optimization, variations of 
sequential quadratic programming (SQP) are used. Nonlinear least-squares 
problems use the Gauss-Newton and Levenberg-Marquardt methods. 
Nonlinear equation solving also uses the trust-region dogleg algorithm.

A choice of line search strategy is given for unconstrained minimization and 
nonlinear least-squares problems. The line search strategies use safeguarded 
cubic and quadratic interpolation and extrapolation methods. 
2-7
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Large-Scale Algorithms
All the large-scale algorithms, except linear programming, are trust-region 
methods. Bound constrained problems are solved using reflective Newton 
methods. Equality constrained problems are solved using a projective 
preconditioned conjugate gradient iteration. You can use sparse iterative 
solvers or sparse direct solvers in solving the linear systems to determine the 
current step. Some choice of preconditioning in the iterative solvers is also 
available.

The linear programming method is a variant of Mehrotra’s predictor-corrector 
algorithm, a primal-dual interior-point method.
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Examples That Use Standard Algorithms
This section presents the medium-scale (i.e., standard) algorithms through a 
tutorial. Examples similar to those in the first part of this tutorial 
(“Unconstrained Minimization Example” through the “Equality Constrained 
Example”) can also be found in the first demonstration, “Tutorial Walk 
Through,” in the M-file optdemo. 

Note  Medium-scale is not a standard term and is used to differentiate these 
algorithms from the large-scale algorithms described in “Large-Scale 
Algorithms” on page 4-1.

The tutorial uses the functions fminunc, fmincon, and fsolve. The other 
optimization routines, fgoalattain, fminimax, lsqnonlin, and fseminf, are 
used in a nearly identical manner, with differences only in the problem 
formulation and the termination criteria. The section “Multiobjective 
Examples” on page 2-27 discusses multiobjective optimization and gives 
several examples using lsqnonlin, fminimax, and fgoalattain, including how 
Simulink can be used in conjunction with the toolbox.

This section includes the following examples:

• Unconstrained Minimization Example

• Nonlinear Inequality Constrained Example

• Constrained Example with Bounds

• Constrained Example with Gradients

• Gradient Check: Analytic Versus Numeric

• Equality Constrained Example

It also discusses

• Maximization

• Greater-Than-Zero Constraints

• Avoiding Global Variables via Anonymous and Nested Functions

• Nonlinear Equations with Analytic Jacobian
2-9
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• Nonlinear Equations with Finite-Difference Jacobian

• Multiobjective Examples

Unconstrained Minimization Example
Consider the problem of finding a set of values [x1, x2] that solves

(2-1)

To solve this two-dimensional problem, write an M-file that returns the 
function value. Then, invoke the unconstrained minimization routine fminunc.

Step 1: Write an M-file objfun.m.
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Invoke one of the unconstrained optimization routines.
x0 = [-1,1];    % Starting guess
options = optimset('LargeScale','off');
[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

After 40 function evaluations, this produces the solution

x =
0.5000   -1.0000

The function at the solution x is returned in fval:

fval =
1.3030e-10

The exitflag tells whether the algorithm converged. An exitflag > 0 means 
a local minimum was found:

exitflag =
     1

The output structure gives more details about the optimization. For fminunc, 
it includes the number of iterations in iterations, the number of function 
evaluations in funcCount, the final step-size in stepsize, a measure of 
first-order optimality (which in this unconstrained case is the infinity norm of 

minimize
x

f x( ) e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=
0
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the gradient at the solution) in firstorderopt, and the type of algorithm used 
in algorithm:

output = 
       iterations: 7
        funcCount: 40
         stepsize: 1
    firstorderopt: 9.2801e-004
        algorithm: 'medium-scale: Quasi-Newton line search'

When more than one local minimum exists, the initial guess for the vector 
[x1, x2] affects both the number of function evaluations and the value of the 
solution point. In the preceding example, x0 is initialized to [-1,1]. 

The variable options can be passed to fminunc to change characteristics of the 
optimization algorithm, as in

x = fminunc(@objfun,x0,options);

options is a structure that contains values for termination tolerances and 
algorithm choices. An options structure can be created using the optimset 
function:

options = optimset('LargeScale','off');

In this example, we have turned off the default selection of the large-scale 
algorithm and so the medium-scale algorithm is used. Other options include 
controlling the amount of command line display during the optimization 
iteration, the tolerances for the termination criteria, whether a user-supplied 
gradient or Jacobian is to be used, and the maximum number of iterations or 
function evaluations. See optimset, the individual optimization functions, and 
“Optimization Options” on page 5-9 for more options and information.

Nonlinear Inequality Constrained Example
If inequality constraints are added to Eq. 2-1, the resulting problem can be 
solved by the fmincon function. For example, find x that solves

(2-2)minimize
x

f x( ) e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=
2-11



2 Tutorial

2-1
subject to the constraints 

Because neither of the constraints is linear, you cannot pass the constraints to 
fmincon at the command line. Instead you can create a second M-file, 
confun.m, that returns the value at both constraints at the current x in a vector 
c. The constrained optimizer, fmincon, is then invoked. Because fmincon 
expects the constraints to be written in the form , you must rewrite 
your constraints in the form

(2-3)

Step 1: Write an M-file confun.m for the constraints.
function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);
     -x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];

Step 2: Invoke constrained optimization routine.
x0 = [-1,1];     % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x, fval] = ... 
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options) 

After 38 function calls, the solution x produced with function value fval is

x = 
-9.5474  1.0474 

fval =
    0.0236

You can evaluate the constraints at the solution by entering

[c,ceq] = confun(x)

x1x2 x1– x2 1.5–≤–

x1x2 10–≥

c x( ) 0≤

x1x2 x1– x2 1.5+ 0≤–

x1x2 10–– 0≤
2
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This returns

c=
1.0e-14 *

 0.1110
-0.1776

ceq =
     []

Note that both constraint values are less than or equal to zero; that is, x 
satisfies .

Constrained Example with Bounds
The variables in x can be restricted to certain limits by specifying simple bound 
constraints to the constrained optimizer function. For fmincon, the command

x = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options);

limits x to be within the range lb <= x <= ub.

To restrict x in Eq. 2-2 to be greater than zero (i.e., ), use the 
commands 

x0 = [-1,1]; % Make a starting guess at the solution
lb = [0,0];  % Set lower bounds
ub = [ ];  % No upper bounds
options = optimset('LargeScale','off');
[x,fval = ... 

fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options)
[c, ceq] = confun(x)

Note that to pass in the lower bounds as the seventh argument to fmincon, you 
must specify values for the third through sixth arguments. In this example, we 
specified [] for these arguments since there are no linear inequalities or linear 
equalities.

After 13 function evaluations, the solution produced is

x = 
       0   1.5000
fval =
       8.5000

c x( ) 0≤

x1 0 ,  x2 0≥≥
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c =
     0

-10
ceq =
     []

When lb or ub contains fewer elements than x, only the first corresponding 
elements in x are bounded. Alternatively, if only some of the variables are 
bounded, then use -inf in lb for unbounded below variables and inf in ub for 
unbounded above variables. For example,

lb = [-inf 0];
ub = [10 inf];

bounds  (  has no lower bound and  has no upper bound). 
Using inf and -inf give better numerical results than using a very large 
positive number or a very large negative number to imply lack of bounds.

Note that the number of function evaluations to find the solution is reduced 
because we further restricted the search space. Fewer function evaluations are 
usually taken when a problem has more constraints and bound limitations 
because the optimization makes better decisions regarding step size and 
regions of feasibility than in the unconstrained case. It is, therefore, good 
practice to bound and constrain problems, where possible, to promote fast 
convergence to a solution. 

Constrained Example with Gradients
Ordinarily the medium-scale minimization routines use numerical gradients 
calculated by finite-difference approximation. This procedure systematically 
perturbs each of the variables in order to calculate function and constraint 
partial derivatives. Alternatively, you can provide a function to compute 
partial derivatives analytically. Typically, the problem is solved more 
accurately and efficiently if such a function is provided.

To solve Eq. 2-2 using analytically determined gradients, do the following.

Step 1: Write an M-file for the objective function and gradient.
function [f,G] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
t = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

x1 10 ,  0 x2≤≤ x1 x2
4
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G = [ t + exp(x(1)) * (8*x(1) + 4*x(2)), 
exp(x(1))*(4*x(1)+4*x(2)+2)];

Step 2: Write an M-file for the nonlinear constraints and the gradients of 
the nonlinear constraints.

function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); %Inequality constraints
c(2) = -x(1) * x(2)-10; 
% Gradient of the constraints
DC= [x(2)-1, -x(2);
 x(1)-1, -x(1)];
% No nonlinear equality constraints
ceq=[];
DCeq = [ ];

G contains the partial derivatives of the objective function, f, returned by 
objfungrad(x), with respect to each of the elements in x:

(2-4)

The columns of DC contain the partial derivatives for each respective constraint 
(i.e., the ith column of DC is the partial derivative of the ith constraint with 
respect to x). So in the above example, DC is

(2-5)

Since you are providing the gradient of the objective in objfungrad.m and the 
gradient of the constraints in confungrad.m, you must tell fmincon that these 

f∂
x∂

-----
 e

x1 4x1
2 2x2

2 4x1x2 2x2 1+ + + +( ) e
x1 8x1 4x2+( )+  

   

 e
x1 4x1 4x2 2+ +( )  

=

 
c1∂
x1∂

--------       
c2∂
x1∂

-------- 

                  

 
c1∂
x2∂

--------       
c2∂
x2∂

-------- 

 x2 1–       x2 –

                  
 x1 1–       x1 –

 =
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M-files contain this additional information. Use optimset to turn the options 
GradObj and GradConstr to 'on' in the example’s existing options structure:

options = optimset(options,'GradObj','on','GradConstr','on');

If you do not set these options to 'on' in the options structure, fmincon does 
not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent 
variables in x. In this example, there are no bound constraints and so they are 
both set to [].

Step 3: Invoke constrained optimization routine.
x0 = [-1,1]; % Starting guess 
options = optimset('LargeScale','off');
options = optimset(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,... 

@confungrad,options)
[c,ceq] = confungrad(x) % Check the constraint values at x

After 20 function evaluations, the solution produced is

x =
-9.5474    1.0474

fval =
0.0236

c =
1.0e-14 *
0.1110
-0.1776

ceq =
     []

Gradient Check: Analytic Versus Numeric
When analytically determined gradients are provided, you can compare the 
supplied gradients with a set calculated by finite-difference evaluation. This is 
particularly useful for detecting mistakes in either the objective function or the 
gradient function formulation.
6
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If you want such gradient checks, set the DerivativeCheck option to 'on' 
using optimset:

options = optimset(options,'DerivativeCheck','on');

The first cycle of the optimization checks the analytically determined gradients 
(of the objective function and, if they exist, the nonlinear constraints). If they 
do not match the finite-differencing gradients within a given tolerance, a 
warning message indicates the discrepancy and gives the option to abort the 
optimization or to continue.

Equality Constrained Example
For routines that permit equality constraints, nonlinear equality constraints 
must be computed in the M-file with the nonlinear inequality constraints. For 
linear equalities, the coefficients of the equalities are passed in through the 
matrix Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint  and the 
nonlinear inequality constraint , rewrite them as

and then solve the problem using the following steps.

Step 1: Write an M-file objfun.m.
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Write an M-file confuneq.m for the nonlinear constraints.
function [c, ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;

Step 3: Invoke constrained optimization routine.
x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');

x1
2 x2+ 1=

x1x2 10–≥

x1
2 x2 1–+ 0=

x1x2– 10– 0≤
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[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],... 
@confuneq,options)

[c,ceq] = confuneq(x) % Check the constraint values at x

After 21 function evaluations, the solution produced is

x =
 -0.7529    0.4332

fval =
1.5093

c =
-9.6739

ceq =
4.0684e-010

Note that ceq is equal to 0 within the default tolerance on the constraints of 
1.0e-006 and that c is less than or equal to zero as desired.

Maximization
The optimization functions fminbnd, fminsearch, fminunc, fmincon, 
fgoalattain, fminimax, lsqcurvefit, and lsqnonlin all perform 
minimization of the objective function . Maximization is achieved by 
supplying the routines with . Similarly, to achieve maximization for 
quadprog supply -H and -f, and for linprog supply -f.

Greater-Than-Zero Constraints
The Optimization Toolbox assumes that nonlinear inequality constraints are of 
the form . Greater-than-zero constraints are expressed as 
less-than-zero constraints by multiplying them by -1. For example, a constraint 
of the form is equivalent to the constraint ; a constraint 
of the form  is equivalent to the constraint .

Parameterizing Your Function as a Nested Functions
As an alternative to writing your function as an anonymous function, you can 
write a single M-file that

• Accepts the additional parameters to your function as inputs.

• Invokes the optimization function. 

• Contains your function as a nested function. 

f x( )
f x( )–

Ci x( ) 0≤

Ci x( ) 0≥ Ci x( )–( ) 0≤
Ci x( ) b≥ Ci x( ) b+–( ) 0≤
8
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The following example illustrates how to write an M-file to find zeros of the 
x3 + bx + c, for different values of the coefficients b and c.

function y = findzero(b, c, x0)

options = optimset('Display', 'off'); % Turn off Display
y = fsolve(@poly, x0, options);

function y = poly(x) % Compute the polynomial.
y = x^3 + b*x + c;
end

end

The main function, findzero, does two things:

• Invokes the function fzero to find a zero of the polynomial.

• Computes the polynomial in a nested function, poly, which is called by 
fzero.

You can call findzero with any values of the coefficients b and c, which are 
then automatically passed to poly because it is a nested function. 

As an example, to find a zero of the polynomial with b = 2 and c = 3.5, using 
the starting point x0 = 0, call findzero as follows.

x = findzero(2, 3.5, 0)

This returns the zero

x =

   -1.0945

Avoiding Global Variables via Anonymous and 
Nested Functions
The optimization functions in the toolbox use several types of functions that 
you define, including

• The objective function

• The constraint functions (for fmincon, fseminf, fgoalattain, and fminimax)
2-19
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• The Hessian and Jacobian multiply functions, HessMult and JacobMult 
respectively, for the large-scale fmincon, fminunc, lsqnonlin, lsqcurvefit 
and fsolve

• An output function

Sometimes these functions might require some additional parameters besides 
the independent variable. There are two ways to provide these additional 
parameters to the function:

• Parameterize your function and then create a function handle to an 
anonymous function that calls your function. This is explained in 
“Parameterizing Your Function Using an Anonymous Function” on 
page 2-20

• Write your function as a nested function within an outer function that calls 
the solver. This method has the additional advantage that you can share 
variables between your functions, as explained in “Parameterizing Your 
Function as a Nested Functions” on page 2-18.

Parameterizing Your Function Using an Anonymous Function
As an example, suppose you want to find the zeros of the function ellipj using 
fsolve. fsolve expects the objective function to take one input argument, but 
the ellipj function takes two, u and m. You can see this function by typing

type ellipj

You are solving for the variable u, whiled m is simply a second parameter to 
specify which Jacobi elliptic function. To look for a zero near u0 = 3  for 
m = 0.5, you can create a function handle to an anonymous function that 
captures the current value of m from the workspace. Then, when the solver 
fsolve calls this function handle, the parameter m exists and ellipj will be 
called with two arguments. You pass this function handle to fsolve with the 
following commands.

u0 = 3;
m = 0.5;
options = optimset('Display','off'); % Turn off Display
x = fsolve(@(u) ellipj(u,m), u0, options)

x = 
      3.7081
0
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Sharing Variables Using Nested Functions
The preceding example uses an existing function ellipj that has more 
arguments than would be passed by fsolve. If you are writing your own 
function, you can use the technique above, or you might find it more convenient 
to use a nested function. Nested functions have the additional advantage that 
you can share variables between them. For example, suppose you want to 
minimize an objective function, subject to an additional nonlinear constraint 
that the objective function should never exceed a certain value. To avoid having 
to recompute the objective function value in the constraint function, you can 
use a nested function. The following code illustrates this.

function [x,fval] = runsharedvalues(a,b,c,d,lower)

objval = []; % Initialize shared variable
x0 = [-1,1];     % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x, fval] = 
fmincon(@objfun,x0,[],[],[],[],[],[],@constrfun,options);

function f = objfun(x)
% Nonlinear objective function
% Variable objval shared with objfun and runsharedvalues
objval = exp(x(1))*(a*x(1)^2+b*x(2)^2+c*x(1)*x(2)+d*x(2)+1);
f = objval;

end

function [c,ceq] = constrfun(x)
% Nonlinear inequality constraints
% Variable objval shared with objfun and runsharedvalues
c(1) = - objval + lower;
c(2:3) = [1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];

end
end  

Now you can run the objective with different values for a, b, c, and d and the 
first nonlinear constraint will ensure you always find the minimum of the 
objective where the objective never goes below the value of lower.
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[x, fval ] = runsharedvalues(-4, 2, 4, 2, 1)

Optimization terminated: first-order optimality measure less
 than options.TolFun and maximum constraint violation is less
 than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
  lower      upper     ineqlin   ineqnonlin
                                     1

x =

   -0.6507    1.3030

fval =

     1

[x,fval] = runsharedvalues(4, 2, 4, 2, 0.5) 
Optimization terminated: first-order optimality measure less
 than options.TolFun and maximum constraint violation is less
 than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
  lower      upper     ineqlin   ineqnonlin
                                     1

x =

   -4.9790    1.9664

fval =

    0.5000

You can see another example of sharing variables via nested functions in 
“Simulink Example Using fminimax” on page 2-33.
2
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Nonlinear Equations with Analytic Jacobian
This example demonstrates the use of the default medium-scale fsolve 
algorithm. It is intended for problems where

• The system of nonlinear equations is square, i.e., the number of equations 
equals the number of unknowns.

• There exists a solution such that .

The example uses fsolve to obtain the minimum of the banana (or Rosenbrock) 
function by deriving and then solving an equivalent system of nonlinear 
equations. The Rosenbrock function, which has a minimum at , is a 
common test problem in optimization. It has a high degree of nonlinearity and 
converges extremely slowly if you try to use steepest descent type methods. It 
is given by

First generalize this function to an n-dimensional function, for any positive, 
even value of n:

This function is referred to as the generalized Rosenbrock function. It consists 
of n squared terms involving n unknowns. 

Before you can use fsolve to find the values of  such that , i.e., 
obtain the minimum of the generalized Rosenbrock function, you must rewrite 
the function as the following equivalent system of nonlinear equations: 

x F x( ) 0=

F x( ) 0=

f x( ) 100 x2 x1
2–( )

2
1 x1–( )2+=

f x( ) 100 x2i x2i 1–
2–( )

2
1 x2i 1––( )2+

i 1=

n 2⁄

∑=

x F x( ) 0=
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This system is square, and you can use fsolve to solve it. As the example 
demonstrates, this system has a unique solution given by . 

Step 1: Write an M-file bananaobj.m to compute the objective function 
values and the Jacobian.

function [F,J] = bananaobj(x);
% Evaluate the vector function and the Jacobian matrix for 
% the system of nonlinear equations derived from the general 
% n-dimensional Rosenbrock function.
% Get the problem size
n = length(x);  
if n == 0, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0, 
   error('Input vector, x, must have an even number of 
components.'); 
end
% Evaluate the vector function
odds  = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1)  = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2); 
% Evaluate the Jacobian matrix if nargout > 1
if nargout > 1
   c = -ones(n/2,1);    C = sparse(odds,odds,c,n,n);
   d = 10*ones(n/2,1);  D = sparse(evens,evens,d,n,n);

F 1( ) 1 x1–=

F 2( ) 10 x2 x1
2–( )=

F 3( ) 1 x3–=

F 4( ) 10 x4 x3
2–( )=

F n 1–( ) 1 xn 1––=

F n( ) 10 xn xn 1–
2–( )=

...

xi 1= i 1 … n, ,=,
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   e = -20.*x(odds);    E = sparse(evens,odds,e,n,n);
   J = C + D + E;
end

Step 2: Call the solve routine for the system of equations.
n = 64;  
x0(1:n,1) = -1.9; 
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','on');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

Use the starting point  for the odd indices, and  for the 
even indices. Accept the fsolve default 'off' for the LargeScale option, and 
the default medium-scale nonlinear equation algorithm 'dogleg'. Then set 
Jacobian to 'on' to use the Jacobian defined in bananaobj.m . The fsolve 
function generates the following output:

                                Norm of  First-order Trust-region
Iteration Func-count   f(x)        step   optimality       radius
    0        1      4281.92                    615            1
    1        2      1546.86           1        329            1
    2        3      112.552         2.5       34.8          2.5
    3        4       106.24        6.25       34.1         6.25
    4        5       106.24        6.25       34.1         6.25
    5        6      51.3854      1.5625       6.39         1.56
    6        7      51.3854     3.90625       6.39         3.91
    7        8      43.8722    0.976562       2.19        0.977
    8        9      37.0713     2.44141       6.27         2.44
    9       10      37.0713     2.44141       6.27         2.44
   10       11      26.2485    0.610352       1.52         0.61
   11       12      20.6649     1.52588       4.63         1.53
   12       13      17.2558     1.52588       6.97         1.53
   13       14      8.48582     1.52588       4.69         1.53
   14       15      4.08398     1.52588       3.77         1.53
   15       16      1.77589     1.52588       3.56         1.53
   16       17     0.692381     1.52588       3.31         1.53
   17       18     0.109777     1.16206       1.66         1.53
   18       19            0   0.0468565          0         1.53
Optimization terminated successfully:
 First-order optimality is less than options.TolFun

x i( ) 1.9–= x i( ) 2=
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Nonlinear Equations with Finite-Difference Jacobian
In the preceding example, the function bananaobj evaluates F and computes 
the Jacobian J. What if the code to compute the Jacobian is not available? By 
default, if you do not indicate that the Jacobian can be computed in the 
objective function (by setting the Jacobian option in options to 'on'), fsolve, 
lsqnonlin, and lsqcurvefit instead use finite differencing to approximate the 
Jacobian. This is the default Jacobian option.You can select finite differencing 
by setting Jacobian to 'off' using optimset. 

This example uses bananaobj from the preceding example as the objective 
function, but sets Jacobian to 'off' so that fsolve approximates the Jacobian 
and ignores the second bananaobj output. It accepts the fsolve default 'off' 
for the LargeScale option, and the default nonlinear equation medium-scale 
algorithm 'dogleg': 

n = 64;  
x0(1:n,1) = -1.9; 
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','off');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

The example produces the following output:

                                Norm of  First-order Trust-region
Iteration Func-count   f(x)        step   optimality       radius
    0       65      4281.92                    615            1
    1      130      1546.86           1        329            1
    2      195      112.552         2.5       34.8          2.5
    3      260       106.24        6.25       34.1         6.25
    4      261       106.24        6.25       34.1         6.25
    5      326      51.3854      1.5625       6.39         1.56
    6      327      51.3854     3.90625       6.39         3.91
    7      392      43.8722    0.976562       2.19        0.977
    8      457      37.0713     2.44141       6.27         2.44
    9      458      37.0713     2.44141       6.27         2.44
   10      523      26.2485    0.610352       1.52         0.61
   11      588      20.6649     1.52588       4.63         1.53
   12      653      17.2558     1.52588       6.97         1.53
   13      718      8.48582     1.52588       4.69         1.53
   14      783      4.08398     1.52588       3.77         1.53
   15      848      1.77589     1.52588       3.56         1.53
6
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   16      913     0.692381     1.52588       3.31         1.53
   17      978     0.109777     1.16206       1.66         1.53
   18     1043            0   0.0468565          0         1.53
Optimization terminated successfully:
 First-order optimality is less than options.TolFun

The finite-difference version of this example requires the same number of 
iterations to converge as the analytic Jacobian version in the preceding 
example. It is generally the case that both versions converge at about the same 
rate in terms of iterations. However, the finite-difference version requires 
many additional function evaluations. The cost of these extra evaluations 
might or might not be significant, depending on the particular problem.

Multiobjective Examples
The previous examples involved problems with a single objective function. This 
section shows how to solve problems with multiobjective functions using 
lsqnonlin, fminimax, and fgoalattain. The first two examples show how to 
optimize parameters in a Simulink model.

This section presents the following examples:

• “Simulink Example Using lsqnonlin” on page 2-27

• “Simulink Example Using fminimax” on page 2-33

• “Signal Processing Example” on page 2-36

Simulink Example Using lsqnonlin
Suppose that you want to optimize the control parameters in the Simulink 
model optsim.mdl. (This model can be found in the Optimization Toolbox 
optim directory. Note that Simulink must be installed on your system to load 
this model.) The model includes a nonlinear process plant modeled as a 
Simulink block diagram shown in Figure 2-1, Plant with Actuator Saturation.
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Figure 2-1:  Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The 
actuator limits are a saturation limit and a slew rate limit. The actuator 
saturation limit cuts off input values greater than 2 units or less than -2 units. 
The slew rate limit of the actuator is 0.8 units/sec. The closed-loop response of 
the system to a step input is shown in Figure 2-2, Closed-Loop Response. You 
can see this response by opening the model (type optsim at the command line 
or click the model name), and selecting Start from the Simulation menu. The 
response plots to the scope.

Actuator Model
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Figure 2-2:  Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input 
to the system. The closed-loop plant is entered in terms of the blocks where the 
plant and actuator have been placed in a hierarchical Subsystem block. A 
Scope block displays output trajectories during the design process. See 
Figure 2-3, Closed-Loop Model.

Figure 2-3:  Closed-Loop Model
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One way to solve this problem is to minimize the error between the output and 
the input signal. The variables are the parameters of the Proportional Integral 
Derivative (PID) controller. If you only need to minimize the error at one time 
unit, it would be a single objective function. But the goal is to minimize the 
error for all time steps from 0 to 100, thus producing a multiobjective function 
(one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking of 
the output. The tracking is performed via an M-file function tracklsq, which 
returns the error signal yout, the output computed by calling sim, minus the 
input signal 1. The code for tracklsq, shown below, is contained in the file 
runtracklsq.m, which is included in the Optimization Toolbox. 

The function runtracklsq sets up all the needed values and then calls 
lsqnonlin with the objective function tracklsq, which is nested inside 
runtracklsq. The variable options passed to lsqnonlin defines the criteria 
and display characteristics. In this case you ask for output, use the 
medium-scale algorithm, and give termination tolerances for the step and 
objective function on the order of 0.001. 

To run the simulation in the model optsim, the variables Kp, Ki, Kd, a1, and a2 
(a1 and a2 are variables in the Plant block) must all be defined. Kp, Ki, and Kd 
are the variables to be optimized. The function tracklsq is nested inside 
runtracklsq so that the variables a1 and a2 are shared between the two 
functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq must run the simulation. The simulation can 
be run either in the base workspace or the current workspace, that is, the 
workspace of the function calling sim, which in this case is the workspace of 
tracklsq. In this example, the simset command is used to tell sim to run the 
simulation in the current workspace by setting 'SrcWorkspace' to 'Current'. 
You can also choose a solver for sim using the simset function. The simulation 
is performed using a fixed-step fifth-order method to 100 seconds.

When the simulation is completed, the variables tout, xout, and yout are now 
in the current workspace (that is, the workspace of tracklsq). The Outport 
block in the block diagram model puts yout into the current workspace at the 
end of the simulation.

The following is the code for runtracklsq.

function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.
0
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optsim                       % Load the model
pid0 = [0.63 0.0504 1.9688]; % Set initial values
a1 = 3; a2 = 43;             % Initialize plant variables in model
options = optimset('LargeScale','off','Display','iter',...
      'TolX',0.001,'TolFun',0.001);
pid = lsqnonlin(@tracklsq, pid0, [], [], options);
Kp = pid(1); Ki = pid(2); Kd = pid(3); 

    function F = tracklsq(pid)
% Track the output of optsim to a signal of 1

        
% Variables a1 and a2 are needed by the model optsim.
% They are shared with RUNTRACKLSQ so do not need to be
% redefined here.
Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

% Compute function value
simopt = simset('solver','ode5','SrcWorkspace','Current');  
% Initialize sim options
[tout,xout,yout] = sim('optsim',[0 100],simopt);
F = yout-1;

    end
end

When you run runtracklsq, the optimization gives the solution for the 
proportional, integral, and derivative (Kp, Ki, Kd) gains of the controller after 
64 function evaluations.

[Kp, Ki, Kd] = runtracklsq

                                                     Directional 
 Iteration  Func-count    Residual     Step-size      derivative    Lambda
     0           4         8.66531
     1          18         5.21604         85.4        -0.00836        6.92469 
     2          25         4.53699            1          -0.107      0.0403059 
     3          32         4.47316        0.973        -0.00209      0.0134348 
     4          40         4.46854         2.45       9.72e-005     0.00676229 
     5          47         4.46575        0.415        -0.00266     0.00338115 
     6          48         4.46526            1       -0.000999     0.00184785 
Optimization terminated: directional derivative along
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 search direction less than TolFun and infinity-norm of
 gradient less than 10*(TolFun+TolX).

Kp =

    3.0956

Ki =

    0.1466

Kd =

   14.1378

The resulting closed-loop step response is shown in Figure 2-4.

Figure 2-4:  Closed-Loop Response Using lsqnonlin
2
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Note  The call to sim results in a call to one of the Simulink ordinary 
differential equation (ODE) solvers. A choice must be made about the type of 
solver to use. From the optimization point of view, a fixed-step solver is the 
best choice if that is sufficient to solve the ODE. However, in the case of a stiff 
system, a variable-step method might be required to solve the ODE. 

The numerical solution produced by a variable-step solver, however, is not a 
smooth function of parameters, because of step-size control mechanisms. This 
lack of smoothness can prevent the optimization routine from converging. The 
lack of smoothness is not introduced when a fixed-step solver is used. (For a 
further explanation, see [1].) 

The Nonlinear Control Design Blockset is recommended for solving 
multiobjective optimization problems in conjunction with variable-step solvers 
in Simulink. It provides a special numeric gradient computation that works 
with Simulink and avoids introducing a problem of lack of smoothness.

Simulink Example Using fminimax
Another approach to optimizing the control parameters in the Simulink model 
shown in “Plant with Actuator Saturation” on page 2-28 is to use the fminimax 
function. In this case, rather than minimizing the error between the output and 
the input signal, you minimize the maximum value of the output at any time t 
between 0 and 100. 

The code for this example, shown below, is contained in the function 
runtrackmm, in which the objective function is simply the output yout returned 
by the sim command. But minimizing the maximum output at all time steps 
might force the output to be far below unity for some time steps. To keep the 
output above 0.95 after the first 20 seconds, the constraint function 
trackmmcon contains the constraint yout >= 0.95 from t=20 to t=100. Because 
constraints must be in the form g <= 0, the constraint in the function is 
g = -yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from 
the current PID values. The nonlinear constraint function is always called 
immediately after the objective function in fmincon, fminimax, fgoalattain, 
and fseminf with the same values. This way you can avoid calling the 
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simulation twice by using nested functions so that the value of yout can be 
shared between the objective and constraint functions as long as it is initialized 
in runtrackmm.

The following is the code for runtrackmm.

function [Kp, Ki, Kd] = runtrackmm
%   Copyright 1990-2004 The MathWorks, Inc.
%   $Revision: 1.4.6.1 $  $Date: 2004/02/11 14:43:27 $

optsim
pid0 = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
options = optimset('Display','iter',...
    'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...
    @trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

    function F = trackmmobj(pid)
        % Track the output of optsim to a signal of 1
        % Variables a1 and a2 are shared with RUNTRACKMM.
        % Variable yout is shared with RUNTRACKMM and 

% RUNTRACKMMCON.
        
        Kp = pid(1);
        Ki = pid(2);
        Kd = pid(3);

        % Compute function value
        opt = simset('solver','ode5','SrcWorkspace','Current');
        [tout,xout,yout] = sim('optsim',[0 100],opt);
        F = yout;
    end

    function [c,ceq] = trackmmcon(pid)
        % Track the output of optsim to a signal of 1
        % Variable yout is shared with RUNTRACKMM and
        % TRACKMMOBJ
4
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        % Compute constraints.
        % We know objective function TRACKMMOBJ is called before 

% this
        %  constraint function and so yout is current.
        c = -yout(20:100)+.95;
        ceq=[];
    end
end

When you run the code, it returns the following results.

[Kp,Ki,Kd] = runtrackmm

Max Directional
Iter F-count {F,constraints} Step-size derivative Procedure

0 5 1.11982
1 11 1.264 1 1.18
2 17 1.055 1 -0.172
3 23 1.004 1 -0.0128 Hessian modified twice
4 29 0.9997 1 3.48e-005 Hessian modified
5 35 0.9996 1 -1.36e-006 Hessian modified twice

Optimization terminated: Search direction less than 2*options.TolX
 and maximum constraint violation is less than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
  lower      upper     ineqlin   ineqnonlin
                                     1
                                    14
                                   182

Kp =

    0.5894

Ki =

    0.0605

Kd =

    5.5295

The last value shown in the MAX{F,constraints} column of the output shows 
that the maximum value for all the time steps is 0.9996. The closed loop 
response with this result is shown in the following Figure 2-5, Closed-Loop 
Response Using fminimax.
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This solution differs from the solution lsqnonlin because you are solving 
different problem formulations.

Figure 2-5:  Closed-Loop Response Using fminimax

Signal Processing Example
Consider designing a linear-phase Finite Impulse Response (FIR) filter. The 
problem is to design a lowpass filter with magnitude one at all frequencies 
between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by 
6
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(2-6)

where A(f) is the magnitude of the frequency response. One solution is to apply 
a goal attainment method to the magnitude of the frequency response. Given a 
function that computes the magnitude, the function fgoalattain will attempt 
to vary the magnitude coefficients a(n) until the magnitude response matches 
the desired response within some tolerance. The function that computes the 
magnitude response is given in filtmin.m. This function takes a, the 
magnitude function coefficients, and w, the discretization of the frequency 
domain we are interested in.

To set up a goal attainment problem, you must specify the goal and weights 
for the problem. For frequencies between 0 and 0.1, the goal is one. For 
frequencies between 0.15 and 0.5, the goal is zero. Frequencies between 0.1 and 
0.15 are not specified, so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The 
length of goal is the same as the length returned by the function filtmin. So 
that the goals are equally satisfied, usually weight would be set to abs(goal). 
However, since some of the goals are zero, the effect of using weight=abs(goal) 
will force the objectives with weight 0 to be satisfied as hard constraints, and 
the objectives with weight 1 possibly to be underattained (see “Goal 
Attainment Method” on page 3-47). Because all the goals are close in 
magnitude, using a weight of unity for all goals will give them equal priority. 
(Using abs(goal) for the weights is more important when the magnitude of 
goal differs more significantly.) Also, setting 

options = optimset('GoalsExactAchieve',length(goal)); 

specifies that each objective should be as near as possible to its goal value 
(neither greater nor less than).

H f( ) h n( )e j2πfn–

n 0=

2M

∑=

 A f( )e j2πfM–=

A f( ) a n( ) 2πfn( )cos

n 0=

M 1–

∑=
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Step 1: Write an M-file filtmin.m.
function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine.
% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);

y0 = filtmin(a0,w);
clf, plot(w,y0,'.r');
drawnow;

% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal)); 

% Call fgoalattain
options = optimset('GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x) filtmin(x,w0)...

a0,goal,weight,[],[],[],[],[],[],[],options);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on

Compare the magnitude response computed with the initial coefficients and 
the final coefficients (Figure 2-6). Note that you could use the remez function in 
the Signal Processing Toolbox to design this filter.
8
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Figure 2-6:  Magnitude Response with Initial and Final Magnitude Coefficients
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Large-Scale Examples
Some of the optimization functions include algorithms for continuous 
optimization problems especially targeted to large problems with sparsity or 
structure. The main large-scale algorithms are iterative, i.e., a sequence of 
approximate solutions is generated. In each iteration a linear system is 
(approximately) solved. The linear systems are solved using the sparse matrix 
capabilities of MATLAB and a variety of sparse linear solution techniques, 
both iterative and direct.

Generally speaking, the large-scale optimization methods preserve structure 
and sparsity, using exact derivative information wherever possible. To solve 
the large-scale problems efficiently, some problem formulations are restricted 
(such as only solving overdetermined linear or nonlinear systems), or require 
additional information (e.g., the nonlinear minimization algorithm requires 
that the gradient be computed in the user-supplied function).

This section summarizes the kinds of problems covered by large-scale methods 
and provides these examples:

• Nonlinear Equations with Jacobian

• Nonlinear Equations with Jacobian Sparsity Pattern

• Nonlinear Least-Squares with Full Jacobian Sparsity Pattern

• Nonlinear Minimization with Gradient and Hessian

• Nonlinear Minimization with Gradient and Hessian Sparsity Pattern

• Nonlinear Minimization with Bound Constraints and Banded 
Preconditioner

• Nonlinear Minimization with Equality Constraints

• Nonlinear Minimization with a Dense but Structured Hessian and Equality 
Constraints

• Quadratic Minimization with Bound Constraints

• Quadratic Minimization with a Dense but Structured Hessian

• Linear Least-Squares with Bound Constraints

• Linear Programming with Equalities and Inequalities

• Linear Programming with Dense Columns in the Equalities
0
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Problems Covered by Large-Scale Methods
This section describes how to formulate problems for functions that use 
large-scale methods. It is important to keep in mind that there are some 
restrictions on the types of problems covered by large-scale methods. For 
example, the function fmincon cannot use large-scale methods when the 
feasible region is defined by either of the following:

• Nonlinear equality or inequality constraints

• Both upper- or lower-bound constraints and equality constraints 

When a function is unable to solve a problem using large-scale methods, it 
reverts to medium-scale methods.

Formulating Problems with Large-Scale Methods
 The following table summarizes how to set up problems for large-scale 
methods and provide the necessary input for the optimization functions. For 
each function, the second column of the table describes how to formulate the 
problem and the third column describes what additional information is needed 
for the large-scale algorithms. For fminunc and fmincon, the gradient must be 
computed along with the objective in the user-supplied function (the gradient 
is not required for the medium-scale algorithms).

Since these methods can also be used on small- to medium-scale problems that 
are not necessarily sparse, the last column of the table emphasizes what 
conditions are needed for large-scale problems to run efficiently without 
exceeding your computer system’s memory capabilities, e.g., the linear 
constraint matrices should be sparse. For smaller problems the conditions in 
the last column are unnecessary.

Note  The following table lists the functions in order of increasing problem 
complexity.

Several examples, which follow this table, clarify the contents of the table.
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Table 2-4:  Large-Scale Problem Coverage and Requirements

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

fminunc Must provide 
gradient for f(x) 
in fun.

• Provide sparsity 
structure of the 
Hessian, or compute 
the Hessian in fun.

• The Hessian should be 
sparse.

fmincon •

such that  where 

•

such that , 
and  is an m-by-n 
matrix where 

Must provide 
gradient for f(x) 
in fun.

• Provide sparsity 
structure of the 
Hessian or compute the 
Hessian in fun.

• The Hessian should be 
sparse.

•  should be sparse.

lsqnonlin •

•

such that  where 

F(x) must be overdetermined 
(have at least as many 
equations as variables).

None • Provide sparsity 
structure of the 
Jacobian or compute 
the Jacobian in fun.

• The Jacobian should be 
sparse.
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lsqcurvefit •

•

such that  where 

 must be 
overdetermined (have at least 
as many equations as 
variables).

None • Provide sparsity 
structure of the 
Jacobian or compute 
the Jacobian in fun.

• The Jacobian should be 
sparse.

fsolve

 must have the same 
number of equations as 
variables.

None • Provide sparsity 
structure of the 
Jacobian or compute 
the Jacobian in fun.

• The Jacobian should be 
sparse.

lsqlin

such that  where 

is an m-by-n matrix where 
 i.e., the problem must 

be overdetermined.

None  should be sparse.

linprog

such that  and  
, where 

None  and  should be 
sparse.

Table 2-4:  Large-Scale Problem Coverage and Requirements (Continued)

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

1
2
--- F x xdata,( ) ydata– 2

2

x
min

1
2
--- F x xdata,( ) ydata– 2

2

x
min

l x u≤ ≤
l u<
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F x( ) 0=
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A Aeq
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In the following examples, many of the M-file functions are available in the 
Optimization Toolbox optim directory. Most of these do not have a fixed 
problem size, i.e., the size of your starting point xstart determines the size 
problem that is computed. If your computer system cannot handle the size 
suggested in the examples below, use a smaller-dimension start point to run 
the problems. If the problems have upper or lower bounds or equalities, you 
must adjust the size of those vectors or matrices as well.

Nonlinear Equations with Jacobian
Consider the problem of finding a solution to a system of nonlinear equations 
whose Jacobian is sparse. The dimension of the problem in this example is 
1000. The goal is to find x such that F(x) = 0. Assuming n = 1000, the nonlinear 
equations are

To solve a large nonlinear system of equations, F(x) = 0, use the large-scale 
method available in fsolve.

quadprog •

such that  where 

•  

such that , 
and  is an m-by-n 
matrix where 

None •  should be sparse.

•  should be sparse.

Table 2-4:  Large-Scale Problem Coverage and Requirements (Continued)

Function Problem
Formulations

Additional 
Information 
Needed

For Large Problems

1
2
---xTHx f Tx+

x
min

l x u≤ ≤
l u<

1
2
---xTHx f Tx+

x
min

Aeq x⋅ beq=
Aeq

m n.≤

H

Aeq

F 1( ) 3x1 2x1
2 2x2–– 1+=

F i( ) 3xi 2xi
2 xi 1–– 2xi 1+–– 1+=
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Step 1: Write an M-file nlsf1.m that computes the objective function values 
and the Jacobian.

function [F,J] = nlsf1(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1)1+ 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1
   d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
   c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
   e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
   J = C + D + E;
end

Step 2: Call the solve routine for the system of equations.
xstart = -ones(1000,1);
fun = @nlsf1; 
options = 
optimset('Display','iter','LargeScale','on','Jacobian','on');
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

A starting point is given as well as the function name. The default method for 
fsolve is medium-scale, so it is necessary to specify 'LargeScale' as 'on' in 
the options argument. Setting the Display option to 'iter' causes fsolve to 
display the output at each iteration. Setting Jacobian to 'on', causes fsolve 
to use the Jacobian information available in nlsf1.m.

The commands display this output:

                                    Norm of First-order  CG-
Iteration Func-count     f(x)          step  optimality  Iterations
    1        2            1011            1         19       0
    2        3         16.1942      7.91898       2.35       3
    3        4       0.0228027      1.33142      0.291       3
    4        5     0.000103359    0.0433329     0.0201       4
    5        6     7.3792e-007    0.0022606   0.000946       4
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    6        7    4.02299e-010  0.000268381  4.12e-005       5
Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

A linear system is (approximately) solved in each major iteration using the 
preconditioned conjugate gradient method. The default value for 
PrecondBandWidth is 0 in options, so a diagonal preconditioner is used. 
(PrecondBandWidth specifies the bandwidth of the preconditioning matrix. A 
bandwidth of 0 means there is only one diagonal in the matrix.)

From the first-order optimality values, fast linear convergence occurs. The 
number of conjugate gradient (CG) iterations required per major iteration is 
low, at most five for a problem of 1000 dimensions, implying that the linear 
systems are not very difficult to solve in this case (though more work is 
required as convergence progresses). 

It is possible to override the default choice of preconditioner (diagonal) by 
choosing a banded preconditioner through the use of the option 
PrecondBandWidth. If you want to use a tridiagonal preconditioner, i.e., a 
preconditioning matrix with three diagonals (or bandwidth of one), set 
PrecondBandWidth to the value 1:

options = optimset('Display','iter','Jacobian','on',...
'LargeScale','on','PrecondBandWidth',1);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case the output is

                                    Norm of First-order  CG-
Iteration Func-count     f(x)          step  optimality  Iterations
    1        2            1011            1         19       0
    2        3         16.0839      7.92496       1.92       1
    3        4       0.0458181       1.3279      0.579       1
    4        5     0.000101184    0.0631898     0.0203       2
    5        6    3.16615e-007   0.00273698    0.00079       2
    6        7    9.72481e-010   0.00018111  5.82e-005       2
Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

Note that although the same number of iterations takes place, the number of 
PCG iterations has dropped, so less work is being done per iteration. See 
“Preconditioned Conjugate Gradients” on page 4-5.
6
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Nonlinear Equations with Jacobian Sparsity Pattern
In the preceding example, the function nlsf1 computes the Jacobian J, a 
sparse matrix, along with the evaluation of F. What if the code to compute the 
Jacobian is not available? By default, if you do not indicate that the Jacobian 
can be computed in nlsf1 (by setting the Jacobian option in options to 'on'), 
fsolve, lsqnonlin, and lsqcurvefit instead uses finite differencing to 
approximate the Jacobian. 

In order for this finite differencing to be as efficient as possible, you should 
supply the sparsity pattern of the Jacobian, by setting JacobPattern to 'on' in 
options. That is, supply a sparse matrix Jstr whose nonzero entries 
correspond to nonzeros of the Jacobian for all x. Indeed, the nonzeros of Jstr 
can correspond to a superset of the nonzero locations of J; however, in general 
the computational cost of the sparse finite-difference procedure will increase 
with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to 
compute the finite differencing on large problems. If the sparsity pattern is not 
provided (and the Jacobian is not computed in the objective function either) 
then, in this problem nlsfs1, the finite-differencing code attempts to compute 
all 1000-by-1000 entries in the Jacobian. But in this case there are only 2998 
nonzeros, substantially less than the 1,000,000 possible nonzeros the 
finite-differencing code attempts to compute. In other words, this problem is 
solvable if you provide the sparsity pattern. If not, most computers run out of 
memory when the full dense finite-differencing is attempted. On most small 
problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file 
nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is the 
same as nlsf1 except that only the function values are returned; sparse 
finite-differencing is used to estimate the sparse Jacobian matrix as needed.

Step 1: Write an M-file nlsf1a.m that computes the objective function 
values.

function F = nlsf1a(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
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F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;

Step 2: Call the system of equations solve routine.
xstart = -ones(1000,1); 
fun = @nlsf1a;
load nlsdat1  % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'LargeScale','on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case, the output displayed is

                                    Norm of First-order  CG-
Iteration Func-count     f(x)          step  optimality  Iterations
    1        6            1011            1         19       0
    2       11         16.0839      7.92496       1.92       1
    3       16       0.0458181       1.3279      0.579       1
    4       21     0.000101184    0.0631898     0.0203       2
    5       26    3.16615e-007   0.00273698    0.00079       2
    6       31    9.72482e-010   0.00018111  5.82e-005       2
Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse 
QR factorization) by indicating a “complete” preconditioner. I.e., if you set 
PrecondBandWidth to Inf, then a sparse direct linear solver is used instead of 
a preconditioned conjugate gradient iteration:

xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1  % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'LargeScale','on','PrecondBandWidth',inf);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

and the resulting display is

                                    Norm of First-order  CG-
Iteration Func-count     f(x)          step  optimality  Iterations
    1        6            1011            1         19       0
    2       11         15.9018      7.92421       1.89       1
8
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    3       16       0.0128163      1.32542     0.0746       1
    4       21    1.73538e-008    0.0397925   0.000196       1
    5       26    1.13169e-018 4.55544e-005  2.76e-009       1
Optimization terminated successfully:
 Relative function value changing by less than OPTIONS.TolFun

When the sparse direct solvers are used, the CG iteration is 1 for that (major) 
iteration, as shown in the output under CG-Iterations. Notice that the final 
optimality and f(x) value (which for fsolve, f(x), is the sum of the squares of the 
function values) are closer to zero than using the PCG method, which is often 
the case.

Nonlinear Least-Squares with Full Jacobian 
Sparsity Pattern
The large-scale methods in lsqnonlin, lsqcurvefit, and fsolve can be used 
with small- to medium-scale problems without computing the Jacobian in fun 
or providing the Jacobian sparsity pattern. (This example also applies to the 
case of using fmincon or fminunc without computing the Hessian or supplying 
the Hessian sparsity pattern.) How small is small- to medium-scale? No 
absolute answer is available, as it depends on the amount of virtual memory 
available in your computer system configuration. 

Suppose your problem has m equations and n unknowns. If the command 
J = sparse(ones(m,n)) causes an Out of memory error on your machine, then 
this is certainly too large a problem. If it does not result in an error, the 
problem might still be too large, but you can only find out by running it and 
seeing if MATLAB is able to run within the amount of virtual memory 
available on your system. 

Let’s say you have a small problem with 10 equations and 2 unknowns, such as 
finding x that minimizes

starting at the point x = [0.3, 0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly formed in 
the user function, the function passed to lsqnonlin should instead compute the 
vector valued function

2 2k e
kx1– e

kx2–+( )
2

k 1=

10

∑
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for  (that is, F should have k components).

Step 1: Write an M-file myfun.m that computes the objective function 
values.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Step 2: Call the nonlinear least-squares routine.
x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer

Because the Jacobian is not computed in myfun.m , and no Jacobian sparsity 
pattern is provided by the JacobPattern option in options, lsqnonlin calls the 
large-scale method with JacobPattern set to Jstr = sparse(ones(10,2)). 
This is the default for lsqnonlin. Note that the Jacobian option in options is 
set to 'off' by default.

When the finite-differencing routine is called the first time, it detects that Jstr 
is actually a dense matrix, i.e., that no speed benefit is derived from storing it 
as a sparse matrix. From then on the finite-differencing routine uses Jstr = 
ones(10,2) (a full matrix) for the optimization computations.

After about 24 function evaluations, this example gives the solution

x = 
0.2578  0.2578

resnorm % Residual or sum of squares
resnorm = 

124.3622

Most computer systems can handle much larger full problems, say into the 
100’s of equations and variables. But if there is some sparsity structure in the 
Jacobian (or Hessian) that can be taken advantage of, the large-scale methods 
will always run faster if this information is provided.

Fk x( ) 2 2k e
kx1– e

kx2–+=

k 1 to 10=
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Nonlinear Minimization with Gradient and Hessian
This example involves solving a nonlinear minimization problem with a 
tridiagonal Hessian matrix H(x) first computed explicitly, and then by 
providing the Hessian’s sparsity structure for the finite-differencing routine.

The problem is to find x to minimize

(2-7)

where n = 1000. 

Step 1: Write an M-file brownfgh.m that computes the objective function, 
the gradient of the objective, and the sparse tridiagonal Hessian matrix.
This file is rather long and is not included here. You can view the code with the 
command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the 
objective function, you need to use optimset to indicate that this information 
is available in brownfgh, using the GradObj and Hessian options.

Step 2: Call a nonlinear minimization routine with a starting point xstart.
n = 1000;
xstart = -ones(n,1); 
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options); 

This 1000 variable problem is solved in 8 iterations and 7 conjugate gradient 
iterations with a positive exitflag indicating convergence. The final function 
value and measure of optimality at the solution x are both close to zero. For 
fminunc, the first order optimality is the infinity norm of the gradient of the 
function, which is zero at a local minimum:

exitflag =
     1
fval =
  2.8709e-017

f x( ) xi
2( )

xi 1+
2 1+( )

xi 1+
2( )

xi
2 1+( )

+

i 1=

n 1–

∑=
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output.iterations
ans =
     8
output.cgiterations
ans =
     7
output.firstorderopt
ans =
4.7948e-010

Nonlinear Minimization with Gradient and Hessian 
Sparsity Pattern
Next, solve the same problem but the Hessian matrix is now approximated by 
sparse finite differences instead of explicit computation. To use the large-scale 
method in fminunc, you must compute the gradient in fun; it is not optional as 
in the medium-scale method.

The M-file function brownfg computes the objective function and gradient. 

Step 1: Write an M-file brownfg.m that computes the objective function 
and the gradient of the objective.

function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
% 
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...

(x(i+1).^2).^(x(i).^2+1);
  f=sum(y);
% Evaluate the gradient if nargout > 1
  if nargout > 1
     i=1:(n-1); g = zeros(n,1);
     g(i) = 2*(x(i+1).^2+1).*x(i).* ...

((x(i).^2).^(x(i+1).^2))+ ...
2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
log(x(i+1).^2);

     g(i+1) = g(i+1) + ...
2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
2



Large-Scale Examples
log(x(i).^2) + ...
2*(x(i).^2+1).*x(i+1).* ...
((x(i+1).^2).^(x(i).^2));

  end

To allow efficient computation of the sparse finite-difference approximation of 
the Hessian matrix H(x), the sparsity structure of H must be predetermined. 
In this case assume this structure, Hstr, a sparse matrix, is available in file 
brownhstr.mat. Using the spy command you can see that Hstr is indeed sparse 
(only 2998 nonzeros). Use optimset to set the HessPattern option to Hstr. 
When a problem as large as this has obvious sparsity structure, not setting the 
HessPattern option requires a huge amount of unnecessary memory and 
computation because fminunc attempts to use finite differencing on a full 
Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on' using optimset, since the 
gradient is computed in brownfg.m. Then execute fminunc as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.
fun = @brownfg;
load brownhstr         % Get Hstr, structure of the Hessian
spy(Hstr)               % View the sparsity structure of Hstr
n = 1000;
xstart = -ones(n,1); 
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options); 

This 1000-variable problem is solved in eight iterations and seven conjugate 
gradient iterations with a positive exitflag indicating convergence. The final 
function value and measure of optimality at the solution x are both close to zero 
(for fminunc, the first-order optimality is the infinity norm of the gradient of 
the function, which is zero at a local minimum):

exitflag =
     1
fval =
7.4738e-017

output.iterations
ans =
     8
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output.cgiterations
ans =
     7
output.firstorderopt
ans =
7.9822e-010

Nonlinear Minimization with Bound Constraints 
and Banded Preconditioner
The goal in this problem is to minimize the nonlinear function

such that , where n is 800 (n should be a multiple of 4), 
, and .

Step 1: Write an M-file tbroyfg.m that computes the objective function and 
the gradient of the objective
The M-file function tbroyfg.m computes the function value and gradient. This 
file is long and is not included here. You can see the code for this function using 
the command

type tbroyfg

The sparsity pattern of the Hessian matrix has been predetermined and stored 
in the file tbroyhstr.mat. The sparsity structure for the Hessian of this 
problem is banded, as you can see in the following spy plot.

load tbroyhstr
spy(Hstr)

f x( ) 1 3 2xi–( )xi xi 1–– xi 1+– 1+ p

i 1=

n

∑ xi xi n 2⁄++ p

i 1=

n
2
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In this plot, the center stripe is itself a five-banded matrix. The following plot 
shows the matrix more clearly:

spy(Hstr(1:20,1:20))

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 4794
2-55



2 Tutorial

2-5
Use optimset to set the HessPattern parameter to Hstr. When a problem as 
large as this has obvious sparsity structure, not setting the HessPattern 
parameter requires a huge amount of unnecessary memory and computation. 
This is because fmincon attempts to use finite differencing on a full Hessian 
matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to 'on' using optimset, since the 
gradient is computed in tbroyfg.m. Then execute fmincon as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.
fun = @tbroyfg;
load tbroyhstr         % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr); 
[x,fval,exitflag,output] = ... 

fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

After eight iterations, the exitflag, fval, and output values are
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exitflag =
     1
fval =
  270.4790
output = 
     iterations: 8
      funcCount: 8
   cgiterations: 18
  firstorderopt: 0.0163
      algorithm: 'large-scale: trust-region reflective Newton'

For bound constrained problems, the first-order optimality is the infinity norm 
of v.*g, where v is defined as in “Box Constraints” on page 4-7, and g is the 
gradient.

Because of the five-banded center stripe, you can improve the solution by using 
a five-banded preconditioner instead of the default diagonal preconditioner. 
Using the optimset function, reset the PrecondBandWidth parameter to 2 and 
solve the problem again. (The bandwidth is the number of upper (or lower) 
diagonals, not counting the main diagonal.)

fun = @tbroyfg;
load tbroyhstr          % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr, ...

'PrecondBandWidth',2); 
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],[],[],lb,ub,[],options); 

The number of iterations actually goes up by two; however the total number of 
CG iterations drops from 18 to 15. The first-order optimality measure is 
reduced by a factor of 1e-3:

exitflag =
     1
fval =
  2.7048e+002
output = 
     iterations: 10
      funcCount: 10
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   cgiterations: 15
  firstorderopt: 7.5339e-005
      algorithm: 'large-scale: trust-region reflective Newton'

Nonlinear Minimization with Equality Constraints

The large-scale method for fmincon can handle equality constraints if no other 
constraints exist. Suppose you want to minimize the same objective as in 
Eq. 2-7, which is coded in the function brownfgh.m, where n = 1000, such that 

 for Aeq that has 100 equations (so Aeq is a 100-by-1000 matrix).

Step 1: Write an M-file brownfgh.m that computes the objective function, 
the gradient of the objective, and the sparse tridiagonal Hessian matrix.
As before, this file is rather long and is not included here. You can view the code 
with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the 
objective function, you need to use optimset to indicate that this information 
is available in brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use 
spy(Aeq) to view the sparsity structure), and is not too badly ill-conditioned:

condest(Aeq*Aeq')
ans =
2.9310e+006

Step 2: Call a nonlinear minimization routine with a starting point xstart.
fun = @brownfgh;
load browneq        % Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1); xstart(2:2:n) = 1;
options = optimset('GradObj','on','Hessian','on', ...

'PrecondBandWidth', inf); 

Aeq x⋅ beq=
8
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[x,fval,exitflag,output] = ...
fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options); 

Setting the option PrecondBandWidth to inf causes a sparse direct solver to be 
used instead of preconditioned conjugate gradients.

The exitflag indicates convergence with the final function value fval after 16 
iterations:

exitflag =
     1
fval =
  205.9313
output = 
       iterations: 16
        funcCount: 16
     cgiterations: 14
    firstorderopt: 2.1434e-004
        algorithm: 'large-scale: projected trust-region Newton'

The linear equalities are satisfied at x.

norm(Aeq*x-beq)
ans =
  1.1913e-012

Nonlinear Minimization with a Dense but Structured 
Hessian and Equality Constraints
The fmincon and fminunc large-scale methods can solve problems where the 
Hessian is dense but structured. For these problems, fmincon and fminunc do 
not compute H*Y with the Hessian H directly, as they do for medium-scale 
problems and for large-scale problems with sparse H, because forming H would 
be memory-intensive. Instead, you must provide fmincon or fminunc with a 
function that, given a matrix Y and information about H, computes W = H*Y.

In this example, the objective function is nonlinear and linear equalities exist 
so fmincon is used. The objective function has the structure 

 f x( ) f̂ x( ) 1
2
--- xTV VT x–=
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where V is a 1000-by-2 matrix. The Hessian of f is dense, but the Hessian of  

is sparse. If the Hessian of  is , then , the Hessian of , is

To avoid excessive memory usage that could happen by working with H 
directly, the example provides a Hessian multiply function, hmfleq1. This 
function, when passed a matrix Y, uses sparse matrices Hinfo, which 

corresponds to , and V to compute the Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs  and V to compute the 
Hessian matrix product. V is a constant, so you can capture V in a function 
handle to an anonymous function.

However,  is not a constant and must be computed at the current x. You can 

do this by computing  in the objective function and returning  as Hinfo in 
the third output argument. By using optimset to set the 'Hessian' options to 
'on', fmincon knows to get the Hinfo value from the objective function and 
pass it to the Hessian multiply function hmfleq1.

Step 1: Write an M-file brownvv.m that computes the objective function, 
the gradient, and the sparse part of the Hessian.
The example passes brownvv to fmincon as the objective function. The 
brownvv.m file is long and is not included here. You can view the code with the 
command

type brownvv

Because brownvv computes the gradient and part of the Hessian as well as the 
objective function, the example (Step 3) uses optimset to set the GradObj and 
Hessian options to 'on'.

f̂

f̂ Ĥ H f

H Ĥ V V T–=

Ĥ

Ĥ

Ĥ

Ĥ Ĥ
0
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Step 2: Write a function to compute Hessian-matrix products for H given 
a matrix Y.
Now, define a function hmfleq1 that uses Hinfo, which is computed in brownvv, 
and V, which you can capture in a function handle to an anonymous function, 
to compute the Hessian matrix product W where 
W = H*Y = (Hinfo - V*V')*Y. This function must have the form

W = hmfleq1(Hinfo,Y)

The first argument must be the same as the third argument returned by the 
objective function brownvv. The second argument to the Hessian multiply 
function is the matrix Y (of W = H*Y). 

Because fmincon expects the second argument Y to be used to form the Hessian 
matrix product, Y is always a matrix with n rows where n is the number of 
dimensions in the problem. The number of columns in Y can vary. Finally, you 
can use a function handle to an anonymous function to capture V, so V can be 
the third argument to 'hmfleqq'. 

function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
%   W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
%   where Hinfo is a sparse matrix computed by BROWNVV 
%   and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);

Note  The function hmfleq1 is available in the Optimization Toolbox as the 
M-file hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a starting point and 
linear equality constraints.
Load the problem parameter, V, and the sparse equality constraint matrices, 
Aeq and beq, from fleq1.mat, which is available in the Optimization Toolbox. 
Use optimset to set the GradObj and Hessian options to 'on' and to set the 
HessMult option to a function handle that points to hmfleq1. Call fmincon with 
objective function brownvv and with V as an additional parameter:

function [fval, exitflag, output, x] = runfleq1
% RUNFLEQ1 demonstrates 'HessMult' option for FMINCON with linear
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% equalities.

%   Copyright 1984-2004 The MathWorks, Inc. 
%   $Revision: 1.3.6.2 $  $Date: 2004/02/11 14:43:07 $

problem = load('fleq1');   % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
n = 1000;             % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1); % 
starting point
options = optimset('GradObj','on','Hessian','on','HessMult',...
@(Hinfo,Y)hmfleq1(Hinfo,Y,V) ,'Display','iter','TolFun',1e-9); 
[x,fval,exitflag,output] = 
fmincon(@(x)brownvv(x,V),xstart,[],[],Aeq,beq,[],[],[],options);

Note  Type [fval,exitflag,output] = runfleq1 to run the preceding code. 
This command displays the values for fval, exitflag, and output, as well as 
the following iterative display.

Because the iterative display was set using optimset, the results displayed are

Norm of First-order 
Iteration f(x) step optimality  CG-iterations
   1       1997.07            1          555          0
   2       1072.56      6.31716          377          1
   3       480.232      8.19554          159          2
   4       136.861      10.3015         59.5          2
   5       44.3708      9.04697         16.3          2
   6       44.3708          100         16.3          2
   7       44.3708           25         16.3          0
   8      -8.90967         6.25         28.5          0
   9      -318.486         12.5          107          1
  10      -318.486         12.5          107          1
  11      -415.445        3.125         73.9          0
  12      -561.688        3.125         47.4          2
  13      -785.326         6.25          126          3
  14      -785.326      4.30584          126          5
  15      -804.414      1.07646         26.9          0
  16      -822.399      2.16965          2.8          3
2
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  17      -823.173      0.40754         1.34          3
  18      -823.241     0.154885        0.555          3
  19      -823.246    0.0518407        0.214          5
  2       -823.246   0.00977601      0.00724          6
Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun

Convergence is rapid for a problem of this size with the PCG iteration cost 
increasing modestly as the optimization progresses. Feasibility of the equality 
constraints is maintained at the solution

norm(Aeq*x-beq) =
           1.2861e-013

Preconditioning
In this example, fmincon cannot use H to compute a preconditioner because H 
only exists implicitly. Instead of H, fmincon uses Hinfo, the third argument 
returned by brownvv, to compute a preconditioner. Hinfo is a good choice 
because it is the same size as H and approximates H to some degree. If Hinfo 
were not the same size as H, fmincon would compute a preconditioner based on 
some diagonal scaling matrices determined from the algorithm. Typically, this 
would not perform as well. 

Quadratic Minimization with Bound Constraints
To minimize a large-scale quadratic with upper and lower bounds, you can use 
the quadprog function.

The problem stored in the MAT-file qpbox1.mat is a positive definite quadratic, 
and the Hessian matrix H is tridiagonal, subject to upper (ub) and lower (lb) 
bounds.

Step 1: Load the Hessian and define f, lb, ub.
load qpbox1  % Get H
lb = zeros(400,1); lb(400) = -inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = -2;

Step 2: Call a quadratic minimization routine with a starting point xstart.
xstart = 0.5*ones(400,1);
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[x,fval,exitflag,output] = ... 
quadprog(H,f,[],[],[],[],lb,ub,xstart);

Looking at the resulting values of exitflag and output,

exitflag =
     1
output = 
    firstorderopt: 7.8435e-006
       iterations: 20
     cgiterations: 1809
        algorithm: 'large-scale: reflective trust-region'

you can see that while convergence occurred in 20 iterations, the high number 
of CG iterations indicates that the cost of the linear system solve is high. In 
light of this cost, one strategy would be to limit the number of CG iterations per 
optimization iteration. The default number is the dimension of the problem 
divided by two, 200 for this problem. Suppose you limit it to 50 using the 
MaxPCGIter flag in options:

options = optimset('MaxPCGIter',50);
[x,fval,exitflag,output] = ... 

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

This time convergence still occurs and the total number of CG iterations (1547) 
has dropped:

exitflag =
     1
output = 
    firstorderopt: 2.3821e-005
       iterations: 36
     cgiterations: 1547
        algorithm: 'large-scale: reflective trust-region'

A second strategy would be to use a direct solver at each iteration by setting 
the PrecondBandWidth option to inf:

options = optimset('PrecondBandWidth',inf);
[x,fval,exitflag,output] = ... 

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Now the number of iterations has dropped to 10:
4
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exitflag =
     1
output = 
    firstorderopt: 4.8955e-007
       iterations: 10
     cgiterations: 9
        algorithm: 'large-scale: reflective trust-region'

Using a direct solve at each iteration usually causes the number of iterations 
to decrease, but often takes more time per iteration. For this problem, the 
tradeoff is beneficial, as the time for quadprog to solve the problem decreases 
by a factor of 10.

Quadratic Minimization with a Dense but Structured 
Hessian
The quadprog large-scale method can also solve large problems where the 
Hessian is dense but structured. For these problems, quadprog does not 
compute H*Y with the Hessian H directly, as it does for medium-scale 
problems and for large-scale problems with sparse H, because forming H would 
be memory-intensive. Instead, you must provide quadprog with a function that, 
given a matrix Y and information about H, computes W = H*Y.

In this example, the Hessian matrix H has the structure H = B + A*A' where 
B is a sparse 512-by-512 symmetric matrix, and A is a 512-by-10 sparse matrix 
composed of a number of dense columns. To avoid excessive memory usage that 
could happen by working with H directly because H is dense, the example 
provides a Hessian multiply function, qpbox4mult. This function, when passed 
a matrix Y, uses sparse matrices A and B to compute the Hessian matrix product 
W = H*Y = (B + A*A )*Y.

In this example, the matrices A and B need to be provided to the Hessian 
multiply function qpbox4mult. You can pass one matrix as the first argument 
to quadprog, which is passed to the Hessian multiply function. You can use a 
nested function to provide the value of the second matrix. 

Step 1: Decide what part of H to pass to quadprog as the first argument. 
Either A, or B can be passed as the first argument to quadprog. The example 
chooses to pass B as the first argument because this results in a better 
preconditioner (see “Preconditioning” on page 2-68).
2-65



2 Tutorial

2-6
quadprog(B,f,[],[],[],[],l,u,xstart,options)

Step 2: Write a function to compute Hessian-matrix products for H. 
Now, define a function rungpbox4t that

• Contains a nested function qpbox4mult that uses A and B to compute the 
Hessian matrix product W where W = H*Y = (B + A*A )*Y. The nested 
function must have the form
W = qpbox4mult(Hinfo,Y,...)

The first two arguments Hinfo and Y are required. 

• Loads the problem parameters from qpbox4.mat. 

• Uses optimset to set the HessMult option to a function handle that points to 
qpbox4mult. 

• Calls quadprog with B as the first argument. 

The first argument to the nested function qpbox4mult must be the same as the 
first argument passed to quadprog, which in this case is the matrix B. 

The second argument to qpbox4mult is the matrix Y (of W = H*Y). Because 
quadprog expects Y to be used to form the Hessian matrix product, Y is always 
a matrix with n rows where n is the number of dimensions in the problem. The 
number of columns in Y can vary. The function qpbox4mult is nested so that the 
value of the matrix A comes from the outer function.

function [fval, exitflag, output, x] = runqpbox4
% RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with 
% bounds.

%   Copyright 1984-2004 The MathWorks, Inc.
%   $Revision: 1.5.6.1 $  $Date: 2004/02/11 14:43:46 $

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested 
% subfunction

% Choose the HessMult option
options = optimset('HessMult',mtxmpy);
6
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% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] = ... 
quadprog(B,f,[],[],[],[],l,u,xstart,options);

    function W = qpbox4mult(B,Y);
        %QPBOX4MULT Hessian matrix product with dense structured 

%Hessian.
        %   W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
        %   INPUT:
        %       B - sparse square matrix (512 by 512)
        %       Y - vector (or matrix) to be multiplied by B + A'*A.
        %   VARIABLES from outer function runqpbox4:
        %       A - sparse matrix with 512 rows and 10 columns.
        %
        %   OUTPUT:
        %       W - The product (B + A*A')*Y.
        %

        % Order multiplies to avoid forming A*A',
        %   which is large and dense
        W = B*Y + A*(A'*Y);
    end

end

Step 3: Call a quadratic minimization routine with a starting point.
To call the quadratic minimizing routine contained in runqpbox4, enter

[fval,exitflag,output] = runqpbox4 

to run the preceding code and display the values for fval, exitflag, and 
output. The results are 

Optimization terminated: relative function value changing by less
 than sqrt(OPTIONS.TolFun), no negative curvature detected in 
current
 trust region model and the rate of progress (change in f(x)) is 
slow.
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fval =

 -1.0538e+003

exitflag =

     3

output = 

       iterations: 18
        algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 0.0028
     cgiterations: 50
          message: [1x206 char]

After 18 iterations with a total of 30 PCG iterations, the function value is 
reduced to

fval = 
          -1.0538e+003

and the first-order optimality is

output.firstorderopt = 
           0.0043

Preconditioning
In this example, quadprog cannot use H to compute a preconditioner because H 
only exists implicitly. Instead, quadprog uses B, the argument passed in 
instead of H, to compute a preconditioner. B is a good choice because it is the 
same size as H and approximates H to some degree. If B were not the same size 
as H, quadprog would compute a preconditioner based on some diagonal scaling 
matrices determined from the algorithm. Typically, this would not perform as 
well.

Because the preconditioner is more approximate than when H is available 
explicitly, adjusting the TolPcg parameter to a somewhat smaller value might 
8
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be required. This example is the same as the previous one, but reduces TolPcg 
from the default 0.1 to 0.01.

function [fval, exitflag, output, x] = runqpbox4prec
% RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG with 
bounds.

%   Copyright 1984-2004 The MathWorks, Inc.
%   $Revision: 1.5.6.1 $  $Date: 2004/02/11 14:43:46 $

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested 
subfunction

% Choose the HessMult option
% Override the TolPCG option
options = optimset('HessMult',mtxmpy,'TolPcg',0.01);

% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] = 
quadprog(B,f,[],[],[],[],l,u,xstart,options);

    function W = qpbox4mult(B,Y);
        %QPBOX4MULT Hessian matrix product with dense structured 

%Hessian.
        %   W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
        %   INPUT:
        %       B - sparse square matrix (512 by 512)
        %       Y - vector (or matrix) to be multiplied by B + A'*A.
        %   VARIABLES from outer function runqpbox4:
        %       A - sparse matrix with 512 rows and 10 columns.
        %
        %   OUTPUT:
        %       W - The product (B + A*A')*Y.
        %
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        % Order multiplies to avoid forming A*A',
        %   which is large and dense
        W = B*Y + A*(A'*Y);
    end

end

Now, enter

[fval,exitflag,output] = runqpbox4prec 

to run the preceding code. After 18 iterations and 50 PCG iterations, the 
function value has the same value to five significant digits

fval = 
-1.0538e+003

but the first-order optimality is further reduced.

output.firstorderopt = 
0.0028

Note  Decreasing TolPcg too much can substantially increase the number of 
PCG iterations. 

Linear Least-Squares with Bound Constraints
Many situations give rise to sparse linear least-squares problems, often with 
bounds on the variables. The next problem requires that the variables be 
nonnegative. This problem comes from fitting a function approximation to a 
piecewise linear spline. Specifically, particles are scattered on the unit square. 
The function to be approximated is evaluated at these points, and a piecewise 
linear spline approximation is constructed under the condition that (linear) 
coefficients are not negative. There are 2000 equations to fit on 400 variables:

load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ...

lsqlin(C,d,[],[],[],[],lb);
0
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The default diagonal preconditioning works fairly well:

exitflag =
     1
resnorm =
    22.5794
output = 
       algorithm: 'large-scale: trust-region reflective Newton'
   firstorderopt: 2.7870e-005
      iterations: 10
    cgiterations: 42

For bound constrained problems, the first-order optimality is the infinity norm 
of v.*g, where v is defined as in “Box Constraints” on page 4-7, and g is the 
gradient.

You can improve (decrease) the first-order optimality by using a sparse QR 
factorization in each iteration. To do this, set PrecondBandWidth to inf.

options = optimset('PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ... 

lsqlin(C,d,[],[],[],[],lb,[],[],options);

The number of iterations and the first-order optimality both decrease:

exitflag =
     1
resnorm =
    22.5794
output = 
       algorithm: 'large-scale: trust-region reflective Newton'
   firstorderopt: 5.5907e-015
      iterations: 12
    cgiterations: 11
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Linear Programming with Equalities and 
Inequalities
The problem is

and you can load the matrices and vectors A, Aeq, b, beq, f, and the lower 
bounds lb into the MATLAB workspace with

load sc50b

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.

You can use linprog to solve the problem:

[x,fval,exitflag,output] = ...
linprog(f,A,b,Aeq,beq,lb,[],[],optimset('Display','iter'));

Because the iterative display was set using optimset, the results displayed are

Residuals:   Primal      Dual      Duality     Total
               Infeas     Infeas       Gap        Rel
               A*x-b     A'*y+z-f     x'*z       Error
  ------------------------------------------------------
  Iter    0:  1.50e+003  2.19e+001  1.91e+004  1.00e+002
  Iter    1:  1.15e+002  2.94e-015  3.62e+003  9.90e-001
  Iter    2:  1.16e-012  2.21e-015  4.32e+002  9.48e-001
  Iter    3:  3.23e-012  5.16e-015  7.78e+001  6.88e-001
  Iter    4:  5.78e-011  7.61e-016  2.38e+001  2.69e-001
  Iter    5:  9.31e-011  1.84e-015  5.05e+000  6.89e-002
  Iter    6:  2.96e-011  1.62e-016  1.64e-001  2.34e-003
  Iter    7:  1.51e-011  2.74e-016  1.09e-005  1.55e-007
  Iter    8:  1.51e-012  2.37e-016  1.09e-011  1.51e-013

Optimization terminated successfully.

For this problem, the large-scale linear programming algorithm quickly 
reduces the scaled residuals below the default tolerance of 1e-08.

fTxmin such that    
Aeq x⋅ beq=

A x⋅ b≤
x 0≥
2
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The exitflag value is positive, telling you linprog converged. You can also get 
the final function value in fval and the number of iterations in 
output.iterations:

exitflag =
     1
fval =
 -70.0000
output = 
      iterations: 8
    cgiterations: 0
       algorithm: 'lipsol'

Linear Programming with Dense Columns in the 
Equalities
The problem is

and you can load the matrices and vectors Aeq, beq, f, lb, and ub into the 
MATLAB workspace with

load densecolumns

The problem in densecolumns.mat has 1677 variables and 627 equalities with 
lower bounds on all the variables, and upper bounds on 399 of the variables. 
The equality matrix Aeq has dense columns among its first 25 columns, which 
is easy to see with a spy plot:

spy(Aeq)

fTxmin such that   
Aeq x⋅ beq=

lb x ub≤ ≤
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You can use linprog to solve the problem:

[x,fval,exitflag,output] = ...
linprog(f,[],[],Aeq,beq,lb,ub,[],optimset('Display','iter'));

Because the iterative display was set using optimset, the results displayed are

Residuals:  Primal      Dual      Upper     Duality     Total
            Infeas     Infeas     Bounds      Gap        Rel
            A*x-b    A'*y+z-w-f  {x}+s-ub   x'*z+s'*w   Error
---------------------------------------------------------------
Iter  0:  1.67e+003  8.11e+002  1.35e+003  5.30e+006  2.92e+001
Iter  1:  1.37e+002  1.33e+002  1.11e+002  1.27e+006  2.48e+000
Iter  2:  3.56e+001  2.38e+001  2.89e+001  3.42e+005  1.99e+000
Iter  3:  4.86e+000  8.88e+000  3.94e+000  1.40e+005  1.89e+000
Iter  4:  4.24e-001  5.89e-001  3.44e-001  1.91e+004  8.41e-001
Iter  5:  1.23e-001  2.02e-001  9.97e-002  8.41e+003  5.79e-001
Iter  6:  3.98e-002  7.91e-002  3.23e-002  4.05e+003  3.52e-001
Iter  7:  7.25e-003  3.83e-002  5.88e-003  1.85e+003  1.85e-001
Iter  8:  1.47e-003  1.34e-002  1.19e-003  8.12e+002  8.52e-002
Iter  9:  2.52e-004  3.39e-003  2.04e-004  2.78e+002  2.99e-002
Iter 10:  3.46e-005  1.08e-003  2.81e-005  1.09e+002  1.18e-002
Iter 11:  6.95e-007  1.53e-012  5.64e-007  1.48e+001  1.62e-003
Iter 12:  1.04e-006  2.26e-012  3.18e-008  8.32e-001  9.09e-005
Iter 13:  3.08e-006  1.23e-012  3.86e-009  7.26e-002  7.94e-006
Iter 14:  3.75e-007  1.09e-012  6.53e-012  1.11e-003  1.21e-007
Iter 15:  5.21e-008  1.30e-012  3.27e-013  8.62e-008  9.15e-010

Optimization terminated successfully.

You can see the returned values of exitflag, fval, and output:

exitflag =
     1
fval =
  9.1464e+003
output = 
      iterations: 15
    cgiterations: 225
       algorithm: 'lipsol'
4
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This time the number of PCG iterations (in output.cgiterations) is nonzero 
because the dense columns in Aeq are detected. Instead of using a sparse 
Cholesky factorization, linprog tries to use the Sherman-Morrison formula to 
solve a linear system involving Aeq*Aeq'. If the Sherman-Morrison formula 
does not give a satisfactory residual, a PCG iteration is used. See the “Main 
Algorithm” section in “Large-Scale Linear Programming” on page 4-13.
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Default Options Settings
The options structure contains options used in the optimization routines. If, 
on the first call to an optimization routine, the options structure is not 
provided, or is empty, a set of default options is generated. Some of the default 
options values are calculated using factors based on problem size, such as 
MaxFunEvals. Some options are dependent on the specific optimization routines 
and are documented on those function reference pages (See “Function 
Reference” on page 5-1). 

Table , Optimization Options, on page 5-9 provides an overview of all the 
options in the options structure.

Changing the Default Settings
The function optimset creates or updates an options structure to pass to the 
various optimization functions. The arguments to the optimset function are 
option name and option value pairs, such as TolX and 1e-4. Any unspecified 
properties have default values. You need to type only enough leading 
characters to define the option name uniquely. Case is ignored for option 
names. For option values that are strings, however, case and the exact string 
are necessary.

help optimset provides information that defines the different options and 
describes how to use them.

Here are some examples of the use of optimset.

Returning All Options
optimset returns all the options that can be set with typical values and default 
values.

Determining Options Used by a Function
The options structure defines the options that can be used by the functions 
provided by the toolbox. Because functions do not use all the options, it can be 
useful to find which options are used by a particular function.

To determine which options structure fields are used by a function, pass the 
name of the function (in this example, fmincon) to optimset.
6
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optimset('fmincon')

or

optimset fmincon

This statement returns a structure. Fields not used by the function have empty 
values ([]); fields used by the function are set to their default values for the 
given function.

Displaying Output
To display output at each iteration, enter

options = optimset('Display', 'iter');

This command sets the value of the Display option to 'iter', which causes the 
toolbox to display output at each iteration. You can also turn off any output 
display ('off'), display output only at termination ('final'), or display output 
only if the problem fails to converge ('notify').

Running Medium-Scale Optimization
For all functions that support medium- and large-scale optimization problems 
except fsolve, the default is for the function to use the large-scale algorithm. 
To use the medium-scale algorithm, enter

options = optimset('LargeScale', 'off');

For fsolve, the default is the medium-scale algorithm. To use the large-scale 
algorithm, enter

options = optimset('LargeScale', 'on');

Setting More Than One Option
You can specify multiple options with one call to optimset. For example, to 
reset the output option and the tolerance on x, enter

options = optimset('Display', 'iter', 'TolX', 1e-6);

Updating an options Structure
To update an existing options structure, call optimset and pass options as 
the first argument:

options = optimset(options, 'Display', 'iter', 'TolX', 1e-6);
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Retrieving Option Values
Use the optimget function to get option values from an options structure. For 
example, to get the current display option, enter

verbosity = optimget(options, 'Display');
8
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Displaying Iterative Output
This section describes the column headings used in the iterative output of

• Medium-scale algorithms

• Large-scale algorithms

Output Headings: Medium-Scale Algorithms
When the options Display option is set to 'iter' for fminsearch, fminbnd, 
fzero, fgoalattain, fmincon, lsqcurvefit, fminunc, fsolve, lsqnonlin, 
fminimax, and fseminf, output is produced in column format.

fminsearch
For fminsearch, the column headings are

Iteration   Func-count     min f(x)         Procedure

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• min f(x) is the minimum function value in the current simplex.

• Procedure gives the current simplex operation: initial, expand, reflect, 
shrink, contract inside, and contract outside.

fzero and fminbnd
For fzero and fminbnd, the column headings are

Func-count      x           f(x)         Procedure

where

• Func-count is the number of function evaluations (which for fzero is the 
same as the number of iterations).

• x is the current point.

• f(x) is the current function value at x.

• Procedure gives the current operation. For fzero, these include initial 
(initial point), search (search for an interval containing a zero), bisection 
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(bisection search), and interpolation. For fminbnd, the possible operations 
are initial, golden (golden section search), and parabolic (parabolic 
interpolation).

fminunc
For fminunc, the column headings are

Directional
Iteration  Func-count f(x) Step-size derivative

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• f(x) is the current function value.

• Step-size is the step size in the current search direction.

• Directional derivative is the gradient of the function along the search 
direction.

lsqnonlin and lsqcurvefit
For lsqnonlin and lsqcurvefit, the headings are

Directional 
Iteration  Func-count Residual Step-size derivative Lambda

where Iteration, Func-count, Step-size, and Directional derivative are 
the same as for fminunc, and

• Residual is the residual (sum of squares) of the function.

• Lambda is the  value defined in “Least-Squares Optimization” on 
page 3-17. (This value is displayed when you use the Levenberg-Marquardt 
method and omitted when you use the Gauss-Newton method.)

fsolve
For fsolve with the default trust-region dogleg method, the headings are 

  Norm of First-order Trust-region
Iteration  Func-count  f(x) step optimality radius

λk
0
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where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• f(x) is the sum of squares of the current function value.

• Norm of step is the norm of the current step size.

• First-order optimality is the infinity norm of the current gradient.

• Trust-region radius is the radius of the trust region for that step.

For fsolve with either the Levenberg-Marquardt or Gauss-Newton method, 
the headings are

Directional 
Iteration  Func-count Residual Step-size derivative 

where

• Residual is the residual (sum of squares) of the function.

• Step-size is the step-size in the current search direction.

• Directional derivative is the gradient of the function along the search 
direction.

fmincon and fseminf
For fmincon and fseminf, the headings are

max     Directional 
Iter F-count  f(x)  constraint  Step-size  derivative  Procedure

where

• Iter is the iteration number.

• F-count is the number of function evaluations.

• f(x) is the current function value.

• max constraint is the maximum constraint violation.

• Step-size is the step size in the search direction.

• Directional derivative is the gradient of the function along the search 
direction.

• Procedure gives a message about the Hessian update and QP subproblem.
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The Procedure messages are discussed in “Updating the Hessian Matrix” on 
page 3-30. 

For fgoalattain and fminimax, the headings are the same as for fmincon 
except that f(x) and max constraint are combined into Max{F,constraints}. 
Max{F,constraints} gives the maximum goal violation or constraint violation 
for fgoalattain and the maximum function value or constraint violation for 
fminimax.

Output Headings: Large-Scale Algorithms

fminunc
For fminunc, the column headings are 

Norm of First-order
Iteration f(x) step optimality   CG-iterations

where

• Iteration is the iteration number.

• f(x) is the current function value.

• Norm of step is the norm of the current step size.

• First-order optimality is the infinity norm of the current gradient.

• CG-iterations is the number of iterations taken by PCG (see 
“Preconditioned Conjugate Gradients” on page 4-5) at the current 
(optimization) iteration.

lsqnonlin, lsqcurvefit, and fsolve
For lsqnonlin, lsqcurvefit, and fsolve, the column headings are

  Norm of First-order 
Iteration  Func-count  f(x) step optimality   CG-iterations

where

• Iteration is the iteration number.

• Func-count is the number of function evaluations.

• f(x) is the sum of the squares of the current function values.

• Norm of step is the norm of the current step size.
2
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• First-order optimality is a measure of first-order optimality. For bound 
constrained problems, the first-order optimality is the infinity norm of v.*g, 
where v is defined as in “Box Constraints” on page 4-7 and g is the gradient. 
For unconstrained problems, it is the infinity norm of the current gradient.

• CG-iterations is the number of iterations taken by PCG (see 
“Preconditioned Conjugate Gradients” on page 4-5) at the current 
(optimization) iteration.

fmincon
For fmincon, the column headings are 

Norm of First-order
Iteration f(x) step optimality    CG-iterations

where

• Iteration is the iteration number.

• f(x) is the current function value.

• Norm of step is the norm of the current step size.

• First-order optimality is a measure of first-order optimality. For bound 
constrained problems, the first-order optimality is the infinity norm of v.*g, 
where v is defined as in “Box Constraints” on page 4-7 and g is the gradient. 
For equality constrained problems, it is the infinity norm of the projected 
gradient. (The projected gradient is the gradient projected into the nullspace 
of Aeq.)

• CG-iterations is the number of iterations taken by PCG (see 
“Preconditioned Conjugate Gradients” on page 4-5) at the current 
(optimization) iteration.

linprog
For linprog, the column headings are

Residuals:   Primal     Dual      Upper     Duality      Total
             Infeas    Infeas     Bounds      Gap         Rel
             A*x-b   A'*y+z-w-f  {x}+s-ub   x'*z+s'*w    Error
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where

• Primal Infeas A*x-b is the norm of the residual A*x - b.

• Dual Infeas A'*y+z-w-f is the norm of the residual A'*y+z-w-f (where w is 
all zero if there are no finite upper bounds).

• Upper Bounds {x}+s-ub is the norm of the residual spones(s).*x+s-ub 
(which is defined to be zero if all variables are unbounded above). This 
column is not printed if no finite upper bounds exist.

• Duality Gap x'*z+s'*w is the duality gap (see “Large-Scale Linear 
Programming” on page 4-13) between the primal objective and the dual 
objective. s and w only appear in this equation if there are finite upper 
bounds.

• Total Rel Error is the total relative error described at the end of the “Main 
Algorithm” subsection of “Large-Scale Linear Programming” on page 4-13.
4
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Calling an Output Function Iteratively
For some problems, you might need output from an optimization algorithm at 
each iteration. For example, you might want to find the sequence of points that 
the algorithm computes and plot those points. To get this information, you can 
create an output function that the optimization function calls at each iteration. 
This section provides an example that shows how to do this. 

The example in this section continues the one described in “Nonlinear 
Inequality Constrained Example” on page 2-11, which uses the function 
fmincon to solve a nonlinear, constrained optimization. To run the example, 
you must first create an M-file for the objective function, objfcn.m, and an 
M-file for the constraints, confcn.m, as described in that section.

At each iteration in this example, the output function 

• Plots the current point computed by the algorithm.

• Stores the point, its corresponding objective function value, and the current 
search direction. The search direction is a vector that points in the direction 
from the current point to the next one.

When the algorithm is complete, the output function saves this information to 
the MATLAB workspace where you can view it.

Creating the Output Function
 To create the output function for the example, 

1 Open a new M-file in the MATLAB editor.

2 Copy and paste the following code into the M-file.

function stop = outfun(x,optimValues,state)
stop=[];
persistent history
persistent searchdir
hold on
switch state
    case 'init'
        history = []; searchdir = [];
    case 'iter'
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% Concatenate current point and objective function value 
% with history. x must be a row vector.

        history = [history;[x optimValues.fval]];
% Concatenate current search direction with searchdir.

        searchdir = [searchdir; optimValues.searchdirection']
        plot(x(1),x(2),'o');
        % Label points with iteration number.
        text(x(1)+.15,x(2),num2str(optimValues.iteration));
    case 'done'
        assignin('base','hist', history);
        assignin('base','search', searchdir);
otherwise
end
hold off

3 Save the file as outfun.m in a directory on the MATLAB path.

The input arguments that the optimization function passes to myfunction are

• x — The point computed by the algorithm at the current iteration

The example keeps a record of these points  in the matrix history and plots 
the points.

• optimValues — Structure containing data from the current iteration

The example uses the following fields of optimValues.

- optimValues.iteration, which is the number of the current iteration, is 
the label of the current point in the plot.

- optimValues.fval is the current objective function value in history.

- optimValues.searchdirection is the current search direction in 
searchdir.

• state — The current state of the algorithm. 

The example determines the current state of the algorithm from state and 
performs tasks accordingly. In this example, state has one of the following 
values at each iteration:

- 'init' — The algorithm has not yet started the first iteration.

- 'iter' — The algorithm has just completed an iteration.

- 'done' — The algorithm has completed the last iteration.
6
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The output argument stop, which this example does not use, returns a flag 
that tells whether the optimization should quit or continue. You can use stop 
to modify the criteria that fmincon uses to decide when to halt.

For more information about these arguments, see “Output Function” on 
page 5-15.

Running the Example
To make the function fmincon call the output function outfun at each iteration, 
set the options field Outputfcn to @outfun with the following command:

 options = optimset('OutputFcn',@outfun,'LargeScale','off');

Then, to run the example, call fmincon with options as an input argument and 
using the initial point [-1 1]:

x0 = [-1 1];
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)

This returns a plot of the sequence of points computed by fmincon. 
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The optimal point occurs at the eighth iteration. Note that the last two points 
in the sequence are so close that they overlap.

The example returns the sequence of points algorithm computes as a matrix 
hist and the sequence of search directions as a matrix search. You can view the 
sequence of points by entering hist, which displays the sequence of points in 
the first two columns and their corresponding objective function values in the 
third.

hist =

   -1.0000    1.0000    1.8394
   -1.3679    1.2500    1.8513
   -5.5708    3.4699    0.3002
   -4.8000    2.2752    0.5298
   -6.7054    1.2618    0.1870
   -8.0679    1.0186    0.0729
   -9.0230    1.0532    0.0353
   -9.5471    1.0471    0.0236
   -9.5474    1.0474    0.0236

You can view the sequence of search directions by entering search.

search =

   -0.3679    0.2500
   -4.2029    2.2199
    0.7708   -1.1947
   -3.8108   -2.0268
   -1.3625   -0.2432
   -0.9552    0.0346
   -0.5241   -0.0061
   -0.0003    0.0003

You can see that the search directions point from the current point in the 
sequence to the next point by computing the differences between consecutive 
points:

hist(2:end,1:2) -  hist(1:end-1,1:2)

ans =
   -0.3679    0.2500
   -4.2029    2.2199
8
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    0.7708   -1.1947
   -1.9054   -1.0134
   -1.3625   -0.2432
   -0.9552    0.0346
   -0.5241   -0.0061
   -0.0003    0.0003
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Optimizing Anonymous Functions Instead of M-Files
The routines in the Optimization Toolbox also perform optimization on 
anonymous functions, as well as functions defined by M-files. 

To represent a mathematical function at the command line, create an 
anonymous function from a string expression. For example, you can create an 
anonymous version of the humps function (use the command type humps to see 
the M-file function humps.m):

fh = @(x)1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2 + 0.04)-6;

The constructor for an anonymous function returns a function handle, shown 
as fh above, that you can use in calling the function. Use the usual MATLAB 
function regular calling syntax to call a function by means of its function 
handle.

Evaluate the anonymous function at 2.0:

fh(2.0)
ans =

-4.8552

You can also pass handle fh to an optimization routine to minimize it:

x = fminbnd(fh, 3, 4)

You can create anonymous functions of more than one argument. For example, 
to use lsqcurvefit, you first need a function that takes two input arguments, 
x and xdata,

fh = @(x,xdata)sin(x).*xdata +(x.^2).*cos(xdata);
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)

ans =

    9.8696
    9.8696
   -9.8696

and you then call lsqcurvefit.
0
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% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)

Other examples that use this technique:

• A matrix equation
x = fsolve(@(x)x*x*x-[1,2;3,4],ones(2,2))

• A nonlinear least-squares problem
x = lsqnonlin(@(x)x*x-[3 5;9 10],eye(2,2))

• An example using fgoalattain where the function has additional 
arguments to pass to the optimization routine. For example, if the function 
to be minimized has additional arguments A, B, and C,
A = [-0.5 0 0; 0 -2 10; 0 1 -2]; 
B = [1 0; -2 2; 0 1]; 
C = [1 0 0; 0 0 1]; 
fun = @(x)sort(eig(A+B*x*C)); 
x = fgoalattain(fun,-ones(2,2),[-5,-3,-1],[5, 3, 1],... 
[ ],[ ],[ ],[ ],-4*ones(2),4*ones(2)); 

solves the problem described on the fgoalattain reference page. 
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Typical Problems and How to Deal with Them
Optimization problems can take many iterations to converge and can be 
sensitive to numerical problems such as truncation and round-off error in the 
calculation of finite-difference gradients. Most optimization problems benefit 
from good starting guesses. This improves the execution efficiency and can help 
locate the global minimum instead of a local minimum.

Advanced problems are best solved by an evolutionary approach, whereby a 
problem with a smaller number of independent variables is solved first. You 
can generally use solutions from lower order problems as starting points for 
higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the 
early stages of an optimization problem can also reduce computation time. 
Such an approach often produces superior results by avoiding local minima.

The Optimization Toolbox functions can be applied to a large variety of 
problems. Used with a little “conventional wisdom,” you can overcome many of 
the limitations associated with optimization techniques. Additionally, you can 
handle problems that are not typically in the standard form by using an 
appropriate transformation. Below is a list of typical problems and 
recommendations for dealing with them.

Table 2-1:  Troubleshooting 

Problem Recommendation

The solution does not appear to 
be a global minimum.

There is no guarantee that you have a global minimum unless 
your problem is continuous and has only one minimum. 
Starting the optimization from a number of different starting 
points can help to locate the global minimum or verify that 
there is only one minimum. Use different methods, where 
possible, to verify results.
2
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fminunc produces warning 
messages and seems to exhibit 
slow convergence near the 
solution.

If you are not supplying analytically determined gradients and 
the termination criteria are stringent, fminunc often exhibits 
slow convergence near the solution due to truncation error in 
the gradient calculation. Relaxing the termination criteria 
produces faster, although less accurate, solutions. For the 
medium-scale algorithm, another option is adjusting the 
finite-difference perturbation levels, DiffMinChange and 
DiffMaxChange, which might increase the accuracy of gradient 
calculations.

Sometimes an optimization 
problem has values of x for 
which it is impossible to 
evaluate the objective function 
fun or the nonlinear 
constraints function nonlcon.

Place bounds on the independent variables or make a penalty 
function to give a large positive value to f and g when 
infeasibility is encountered. For gradient calculation, the 
penalty function should be smooth and continuous.

The function that is being 
minimized has discontinuities.

The derivation of the underlying method is based upon 
functions with continuous first and second derivatives. Some 
success might be achieved for some classes of discontinuities 
when they do not occur near solution points. One option is to 
smooth the function. For example, the objective function might 
include a call to an interpolation function to do the smoothing.

Or, for the medium-scale algorithms, you can adjust the 
finite-difference parameters in order to jump over small 
discontinuities. The variables DiffMinChange and 
DiffMaxChange control the perturbation levels for x used in the 
calculation of finite-difference gradients. The perturbation, 

, is always in the range 
DiffMinChange < Dx < DiffMaxChange.

Table 2-1:  Troubleshooting  (Continued)

Problem Recommendation

∆x
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Warning messages are 
displayed.

This sometimes occurs when termination criteria are overly 
stringent, or when the problem is particularly sensitive to 
changes in the independent variables. This usually indicates 
truncation or round-off errors in the finite-difference gradient 
calculation, or problems in the polynomial interpolation 
routines. These warnings can usually be ignored because the 
routines continue to make steps toward the solution point; 
however, they are often an indication that convergence will 
take longer than normal. Scaling can sometimes improve the 
sensitivity of a problem.

The independent variables, 
, can only take on discrete 

values, for example, integers.

This type of problem commonly occurs when, for example, the 
variables are the coefficients of a filter that are realized using 
finite-precision arithmetic or when the independent variables 
represent materials that are manufactured only in standard 
amounts.

Although the Optimization Toolbox functions are not explicitly 
set up to solve discrete problems, you can solve some discrete 
problems by first solving an equivalent continuous problem. 
Do this by progressively eliminating discrete variables from 
the independent variables, which are free to vary.

Eliminate a discrete variable by rounding it up or down to the 
nearest best discrete value. After eliminating a discrete 
variable, solve a reduced order problem for the remaining free 
variables. Having found the solution to the reduced order 
problem, eliminate another discrete variable and repeat the 
cycle until all the discrete variables have been eliminated.

dfildemo is a demonstration routine that shows how filters 
with fixed-precision coefficients can be designed using this 
technique.

Table 2-1:  Troubleshooting  (Continued)

Problem Recommendation

x
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The minimization routine 
appears to enter an infinite 
loop or returns a solution that 
does not satisfy the problem 
constraints.

Your objective (fun), constraint (nonlcon, seminfcon), or 
gradient (computed by fun) functions might be returning Inf, 
NaN, or complex values. The minimization routines expect only 
real numbers to be returned. Any other values can cause 
unexpected results. Insert some checking code into the 
user-supplied functions to verify that only real numbers are 
returned (use the function isfinite).

You do not get the 
convergence you expect from 
the lsqnonlin routine.

You might be forming the sum of squares explicitly and 
returning a scalar value. lsqnonlin expects a vector (or 
matrix) of function values that are squared and summed 
internally.

Table 2-1:  Troubleshooting  (Continued)

Problem Recommendation
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Standard Algorithms

Standard Algorithms provides an introduction to the different optimization problem formulations, 
and describes the medium-scale (i.e., standard) algorithms used in the toolbox functions. These 
algorithms have been chosen for their robustness and iterative efficiency. The choice of problem 
formulation (e.g., unconstrained, least-squares, constrained, minimax, multiobjective, or goal 
attainment) depends on the problem being considered and the required execution efficiency.

This chapter consists of these sections:

Optimization Overview (p. 3-3) Introduces optimization as a way of finding a set of 
parameters that can in some way be defined as optimal. 
These parameters are obtained by minimizing or maximizing 
an objective function, subject to equality or inequality 
constraints and/or parameter bounds.

Unconstrained Optimization 
(p. 3-4)

Discusses the use of quasi-Newton and line search methods 
for unconstrained optimization. 

Quasi-Newton Implementation 
(p. 3-10)

Provides implementation details for the Hessian update and 
line search phases of the quasi-Newton algorithm.

Least-Squares Optimization 
(p. 3-17)

Discusses the use of the Gauss-Newton and 
Levenberg-Marquardt methods for nonlinear least-squares 
(LS) optimization. Also provides implementation details for 
the Gauss-Newton and Levenberg-Marquardt methods used 
in the nonlinear least-squares optimization routines, 
lsqnonlin and lsqcurvefit.

Nonlinear Systems of Equations 
(p. 3-23)

Discusses the use of Gauss-Newton, Newton’s, and 
trust-region dogleg methods for the solution of nonlinear 
systems of equations. Also provides implementation details 
for the Gauss-Newton and trust-region dogleg methods used 
by the fsolve function.
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Note  Medium-scale is not a standard term and is used here only to 
differentiate these algorithms from the large-scale algorithms described in 
“Large-Scale Algorithms” on page 4-1.

Constrained Optimization (p. 3-27) Discusses the use of the Kuhn-Tucker (KT) equations as the 
basis for sequential quadratic programming (SQP) methods. 
Provides implementation details for the Hessian matrix 
update, quadratic programming problem solution, and line 
search and merit function calculation phases of the SQP 
algorithm used in fmincon, fminimax, fgoalattain, and 
fseminf. Explains the simplex algorithm, which is an 
optional algorithm for linprog.

Multiobjective Optimization 
(p. 3-41)

Introduces multiobjective optimization and discusses 
strategies for dealing with competing objectives. It discusses 
in detail the use of the goal attainment method, and suggests 
improvements to the SQP method for use with the goal 
attainment method.

Selected Bibliography (p. 3-51) Lists published materials that support concepts implemented 
in the medium-scale algorithms.



Optimization Overview
Optimization Overview
Optimization techniques are used to find a set of design parameters, 

, that can in some way be defined as optimal. In a simple case 
this might be the minimization or maximization of some system characteristic 
that is dependent on x. In a more advanced formulation the objective function, 
f(x), to be minimized or maximized, might be subject to constraints in the form 
of equality constraints, ; inequality constraints, 

; and/or parameter bounds, .

A General Problem (GP) description is stated as

(3-1)

subject to

where x is the vector of length n design parameters, f(x) is the objective 
function, which returns a scalar value, and the vector function G(x) returns a 
vector of length m containing the values of the equality and inequality 
constraints evaluated at x . 

An efficient and accurate solution to this problem depends not only on the size 
of the problem in terms of the number of constraints and design variables but 
also on characteristics of the objective function and constraints. When both the 
objective function and the constraints are linear functions of the design 
variable, the problem is known as a Linear Programming (LP) problem. 
Quadratic Programming (QP) concerns the minimization or maximization of a 
quadratic objective function that is linearly constrained. For both the LP and 
QP problems, reliable solution procedures are readily available. More difficult 
to solve is the Nonlinear Programming (NP) problem in which the objective 
function and constraints can be nonlinear functions of the design variables. A 
solution of the NP problem generally requires an iterative procedure to 
establish a direction of search at each major iteration. This is usually achieved 
by the solution of an LP, a QP, or an unconstrained subproblem.

x x1 x2 … xn,,,{ }=

Gi x( ) 0=  i 1 … me,,=( )
Gi x( ) 0 ≤ i me 1+ … m,,=( ) xl xu,

   f x( )
x

minimize

Gi x( ) 0     ,= i 1 … me,,=

Gi x( ) 0≤  , i me 1+ … m,,=
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Unconstrained Optimization
Although a wide spectrum of methods exists for unconstrained optimization, 
methods can be broadly categorized in terms of the derivative information that 
is, or is not, used. Search methods that use only function evaluations (e.g., the 
simplex search of Nelder and Mead [32]) are most suitable for problems that 
are very nonlinear or have a number of discontinuities. Gradient methods are 
generally more efficient when the function to be minimized is continuous in its 
first derivative. Higher order methods, such as Newton’s method, are only 
really suitable when the second order information is readily and easily 
calculated, because calculation of second order information, using numerical 
differentiation, is computationally expensive. 

Gradient methods use information about the slope of the function to dictate a 
direction of search where the minimum is thought to lie. The simplest of these 
is the method of steepest descent in which a search is performed in a 
direction, , where  is the gradient of the objective function. This 
method is very inefficient when the function to be minimized has long narrow 
valleys as, for example, is the case for Rosenbrock’s function

(3-2)

The minimum of this function is at  where . A contour map 
of this function is shown in Figure 3-1, along with the solution path to the 
minimum for a steepest descent implementation starting at the point [-1.9,2]. 
The optimization was terminated after 1000 iterations, still a considerable 
distance from the minimum. The black areas are where the method is 
continually zigzagging from one side of the valley to another. Note that toward 
the center of the plot, a number of larger steps are taken when a point lands 
exactly at the center of the valley.
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Unconstrained Optimization
Figure 3-1:  Steepest Descent Method on Rosenbrock’s Function (Eq. 2-2)

This type of function (Eq. 3-2), also known as the banana function, is notorious 
in unconstrained examples because of the way the curvature bends around the 
origin. Eq. 3-2 is used throughout this section to illustrate the use of a variety 
of optimization techniques. The contours have been plotted in exponential 
increments because of the steepness of the slope surrounding the U-shaped 
valley.

This section continues with discussions of the following:

• Quasi-Newton Methods

• Line Search

• Quasi-Newton Implementation
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Quasi-Newton Methods
Of the methods that use gradient information, the most favored are the 
quasi-Newton methods. These methods build up curvature information at each 
iteration to formulate a quadratic model problem of the form

(3-3)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a 
constant vector, and b is a constant. The optimal solution for this problem 
occurs when the partial derivatives of x go to zero, i.e.,

(3-4)

The optimal solution point, , can be written as

(3-5)

Newton-type methods (as opposed to quasi-Newton methods) calculate H 
directly and proceed in a direction of descent to locate the minimum after a 
number of iterations. Calculating H numerically involves a large amount of 
computation. Quasi-Newton methods avoid this by using the observed behavior 
of f(x) and  to build up curvature information to make an approximation 
to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However, 
the formula of Broyden [3], Fletcher [14], Goldfarb [22], and Shanno [39] 
(BFGS) is thought to be the most effective for use in a General Purpose method.

The formula given by BFGS is

 (3-6)

where

As a starting point, can be set to any symmetric positive definite matrix, for 
example, the identity matrix I. To avoid the inversion of the Hessian H, you can 
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derive an updating method that avoids the direct inversion of H by using a 
formula that makes an approximation of the inverse Hessian  at each 
update. A well known procedure is the DFP formula of Davidon [9], Fletcher, 
and Powell [16]. This uses the same formula as the BFGS method (Eq. 3-6) 
except that is substituted for .

The gradient information is either supplied through analytically calculated 
gradients, or derived by partial derivatives using a numerical differentiation 
method via finite differences. This involves perturbing each of the design 
variables, x, in turn and calculating the rate of change in the objective function. 

At each major iteration, k, a line search is performed in the direction

(3-7)

The quasi-Newton method is illustrated by the solution path on Rosenbrock’s 
function (Eq. 3-2) in Figure 3-2, BFGS Method on Rosenbrock’s Function. The 
method is able to follow the shape of the valley and converges to the minimum 
after 140 function evaluations using only finite difference gradients.

H 1–

qk sk

d Hk
1–– f xk( )∇⋅=
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Figure 3-2:  BFGS Method on Rosenbrock’s Function

Line Search
Line search is a search method that is used as part of a larger optimization 
algorithm. At each step of the main algorithm, the line-search method searches 
along the line containing the current point, xk, parallel to the search direction, 
which is a vector determined by the main algorithm. That is, the method finds 
the next iterate of the form

(3-8)

where denotes the current iterate, dk is the search direction, and is a 
scalar step-length parameter.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

o

Start Point

oSolution

o
o
o

o

o

o

o o

o o oo o o

oo
o

o

oo
o

ooooo

xk 1+

xk 1+ xk α∗dk+=

xk α



Unconstrained Optimization
The line search method attempts to decrease the objective function along the 
line  by repeatedly minimizing polynomial interpolation models of the 
objective function. The line search procedure has two main steps:

• The bracketing phase determines the range of points on the line 
 to be searched. The bracket corresponds to an interval 

specifying the range of values of α.

• The sectioning step divides the bracket into subintervals, on which the 
minimum of the objective function is approximated by polynomial 
interpolation.

The resulting step length α satisfies the Wolfe conditions:

(3-9)

(3-10)

where c1 and c2 are constants with 0 < c1 < c2 < 1.

The first condition (3-1) requires that αk gives sufficiently decreases the 
objective function. The second condition(3-2) ensures that the step length is not 
too small. 

The line search method is an implementation of the algorithm described in 
Section 2-6 of [15]. See also [33] for more information about line search.

xk αd+

xk 1+ xk α∗dk+=

f xk αdk+( ) f xk( ) c1α fk
T∇ dk+≤

f∇ xk αdk+( )Tdk c2α fk
T∇ dk≥
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Quasi-Newton Implementation 
This section describes the implementation of the quasi-Newton method in the 
toolbox. The algorithm consists of two phases:

• Determination of a direction of search (Hessian update)

• Line search procedures

Hessian Update
Many of the optimization functions determine the direction of search by 
updating the Hessian matrix at each iteration, using the BFGS method 
(Eq. 3-6). The function fminunc also provides an option to use the DFP method 
given in “Quasi-Newton Methods” on page 3-6 (set HessUpdate to 'dfp' in 
options to select the DFP method). The Hessian, H, is always maintained to 
be positive definite so that the direction of search, d, is always in a descent 
direction. This means that for some arbitrarily small step  in the direction d, 
the objective function decreases in magnitude. You achieve positive 
definiteness of H by ensuring that H is initialized to be positive definite and 
thereafter (from Eq. 3-11) is always positive. The term  is a product 
of the line search step length parameter  and a combination of the search 
direction d with past and present gradient evaluations,

(3-11)

You always achieve the condition that  is positive by performing a 
sufficiently accurate line search. This is because the search direction, d, is a 
descent direction, so that  and  are always positive. Thus, the 
possible negative term  can be made as small in magnitude as 
required by increasing the accuracy of the line search. 

Line Search Procedures
After choosing the direction of the search, the optimization function uses a line 
search procedure to determine how far to move in the search direction. This 
section describes the line search procedures used by the functions lsqnonlin, 
lsqcurvefit, and fsolve. 

α
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qk
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Quasi-Newton Implementation
The functions use one of two line search strategies, depending on whether 
gradient information is readily available or whether it must be calculated 
using a finite difference method:

• When gradient information is available, the default is to use a cubic 
polynomial method. 

• When gradient information is not available, the default is to use a mixed 
cubic and quadratic polynomial method. 

Cubic Polynomial Method 
In the proposed cubic polynomial method, a gradient and a function evaluation 
are made at every iteration k. At each iteration an update is performed when a 
new point is found, , that satisfies the condition

(3-12)

At each iteration a step, , is attempted to form a new iterate of the form

(3-13)

If this step does not satisfy the condition (Eq. 3-12), then  is reduced to form 
a new step, . The usual method for this reduction is to use bisection, i.e., 
to continually halve the step length until a reduction is achieved in f(x). 
However, this procedure is slow when compared to an approach that involves 
using gradient and function evaluations together with cubic 
interpolation/extrapolation methods to identify estimates of step length.

When a point is found that satisfies the condition (Eq. 3-12), an update is 
performed if  is positive. If it is not, then further cubic interpolations are 
performed until the univariate gradient term  is sufficiently small 
so that  is positive. 

It is usual practice to reset to unity after every iteration. However, note that 
the quadratic model (Eq. 3-3) is generally only a good one near to the solution 
point. Therefore,  is modified at each major iteration to compensate for the 
case when the approximation to the Hessian is monotonically increasing or 
decreasing. To ensure that, as approaches the solution point, the procedure 
reverts to a value of  close to unity, the values of  and  
are used to estimate the closeness to the solution point and thus to control the 
variation in . 
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Cubic Polynomial Line Search Procedures. After each update procedure, a step length 
 is attempted, following which a number of scenarios are possible. 

Consideration of all the possible cases is quite complicated and so they are 
represented pictorially below. 

For each case: 

• The left point on the graph represents the point . 

• The slope of the line bisecting each point represents the slope of the 
univariate gradient, , which is always negative for the left point. 

• The right point is the point after a step of  is taken in the direction d.
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Case 2:  
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Quasi-Newton Implementation
Case 3: 

Case 4:   where  

Cases 1 and 2 show the procedures performed when the value  is 
positive. Cases 3 and 4 show the procedures performed when the value 

 is negative. The notation  refers to the smallest 
value of the set . 

At each iteration a cubicly interpolated step length  is calculated and then 
used to adjust the step length parameter . Occasionally, for very 
nonlinear functions  can be negative, in which case is given a value of 

. 

Certain robustness measures have also been included so that, even in the case 
when false gradient information is supplied, you can achieve a reduction in f(x) 
by taking a negative step. You do this by setting when  falls 
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below a certain threshold value (e.g., 1e-8). This is important when extremely 
high precision is required, if only finite difference gradients are available.

Mixed Cubic and Quadratic Polynomial Method
The cubic interpolation/extrapolation method has proved successful for a large 
number of optimization problems. However, when analytic derivatives are not 
available, evaluating finite difference gradients is computationally expensive. 
Therefore, another interpolation/extrapolation method is implemented so that 
gradients are not needed at every iteration. The approach in these 
circumstances, when gradients are not readily available, is to use a quadratic 
interpolation method. The minimum is generally bracketed using some form of 
bisection method. This method, however, has the disadvantage that all the 
available information about the function is not used. For instance, a gradient 
calculation is always performed at each major iteration for the Hessian update. 
Therefore, given three points that bracket the minimum, it is possible to use 
cubic interpolation, which is likely to be more accurate than using quadratic 
interpolation. Further efficiencies are possible if, instead of using bisection to 
bracket the minimum, extrapolation methods similar to those used in the cubic 
polynomial method are used. 

Hence, the method that is used in lsqnonlin, lsqcurvefit, and fsolve is to 
find three points that bracket the minimum and to use cubic interpolation to 
estimate the minimum at each line search. The estimation of step length at 
each minor iteration, j, is shown in the following graphs for a number of point 
combinations. The left-most point in each graph represents the function value 

 and univariate gradient  obtained at the last update. The 
remaining points represent the points accumulated in the minor iterations of 
the line search procedure.

The terms  and  refer to the minimum obtained from a respective 
quadratic and cubic interpolation or extrapolation. For highly nonlinear 
functions,  and  can be negative, in which case they are set to a value of 

 so that they are always maintained to be positive. Cases 1 and 2 use 
quadratic interpolation with two points and one gradient to estimate a third 
point that brackets the minimum. If this fails, cases 3 and 4 represent the 
possibilities for changing the step length when at least three points are 
available. 

When the minimum is finally bracketed, cubic interpolation is achieved using 
one gradient and three function evaluations. If the interpolated point is greater 
than any of the three used for the interpolation, then it is replaced with the 

f x1( ) f xk( )∇

αq αc

αc αq
2αk
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Quasi-Newton Implementation
point with the smallest function value. Following the line search procedure, the 
Hessian update procedure is performed as for the cubic polynomial line search 
method.

The following graphs illustrate the line search procedures for cases 1 
through 4, with a gradient only for the first point. 

Case 1:  

Case 2:  

Case 3:  
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Case 4:  f xj 1+( ) f xk( )>

α
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Least-Squares Optimization
Least-Squares Optimization
The line search procedures used in conjunction with a quasi-Newton method 
are used as part of the nonlinear least-squares (LS) optimization routines, 
lsqnonlin and lsqcurvefit. In the least-squares problem a function f(x) is 
minimized that is a sum of squares.

(3-14)

Problems of this type occur in a large number of practical applications, 
especially when fitting model functions to data, i.e., nonlinear parameter 
estimation. They are also prevalent in control where you want the output, 

, to follow some continuous model trajectory, , for vector x and 
scalar t. This problem can be expressed as

(3-15)

where  and  are scalar functions.

When the integral is discretized using a suitable quadrature formula, Eq. 3-15 
can be formulated as a least-squares problem:

(3-16)

where  and  include the weights of the quadrature scheme. Note that in this 
problem the vector F(x) is

In problems of this kind, the residual  is likely to be small at the 
optimum since it is general practice to set realistically achievable target 
trajectories. Although the function in LS (Eq. 3-15) can be minimized using a 
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general unconstrained minimization technique, as described in 
“Unconstrained Optimization” on page 3-4, certain characteristics of the 
problem can often be exploited to improve the iterative efficiency of the solution 
procedure. The gradient and Hessian matrix of LS (Eq. 3-15) have a special 
structure. 

Denoting the m-by-n Jacobian matrix of F(x) as J(x), the gradient vector of f(x) 
as , the Hessian matrix of f(x) as , and the Hessian matrix of each 

 as , you have

(3-17)

where

The matrix Q(x) has the property that when the residual  tends to zero 
as  approaches the solution, then Q(x) also tends to zero. Thus when  
is small at the solution, a very effective method is to use the Gauss-Newton 
direction as a basis for an optimization procedure.

This section continues with discussions of the following:

• Gauss-Newton Method

• Levenberg-Marquardt Method

• Nonlinear Least-Squares Implementation 

Gauss-Newton Method
In the Gauss-Newton method, a search direction, , is obtained at each major 
iteration, k, that is a solution of the linear least-squares problem.

(3-18)

The direction derived from this method is equivalent to the Newton direction 
when the terms of Q(x) can be ignored. The search direction  can be used as 
part of a line search strategy to ensure that at each iteration the function f(x) 
decreases. 
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Least-Squares Optimization
Consider the efficiencies that are possible with the Gauss-Newton method. 
Figure 3-3 shows the path to the minimum on Rosenbrock’s function (Eq. 3-2) 
when posed as a least-squares problem. The Gauss-Newton method converges 
after only 48 function evaluations using finite difference gradients, compared 
to 140 iterations using an unconstrained BFGS method.

Figure 3-3:  Gauss-Newton Method on Rosenbrock’s Function

The Gauss-Newton method often encounters problems when the second order 
term Q(x) in Eq. 3-17 is significant. A method that overcomes this problem is 
the Levenberg-Marquardt method.

Levenberg-Marquardt Method
The Levenberg-Marquardt [27],[29] method uses a search direction that is a 
solution of the linear set of equations

(3-19)

where the scalar  controls both the magnitude and direction of . When  
is zero, the direction  is identical to that of the Gauss-Newton method. As 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

o

Start Point

oSolution

o

o

o

o

o

o
o

o

ooo

J xk( )TJ xk( ) λkI+( )dk J xk( )F xk( )–=

λk dk λk
dk
3-19



3 Standard Algorithms

3-2
 tends to infinity,  tends toward a vector of zeros and a steepest descent 
direction. This implies that for some sufficiently large , the term 

 holds true. The term  can therefore be controlled to 
ensure descent even when second order terms, which restrict the efficiency of 
the Gauss-Newton method, are encountered. 

The Levenberg-Marquardt method therefore uses a search direction that is a 
cross between the Gauss-Newton direction and the steepest descent. This is 
illustrated in Figure 3-4, Levenberg-Marquardt Method on Rosenbrock’s 
Function. The solution for Rosenbrock’s function (Eq. 3-2) converges after 90 
function evaluations compared to 48 for the Gauss-Newton method. The poorer 
efficiency is partly because the Gauss-Newton method is generally more 
effective when the residual is zero at the solution. However, such information 
is not always available beforehand, and the increased robustness of the 
Levenberg-Marquardt method compensates for its occasional poorer efficiency.

Figure 3-4:  Levenberg-Marquardt Method on Rosenbrock’s Function
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Least-Squares Optimization
Nonlinear Least-Squares Implementation
For a general survey of nonlinear least-squares methods, see Dennis [10]. 
Specific details on the Levenberg-Marquardt method can be found in 
Moré [30]. Both the Gauss-Newton method and the Levenberg-Marquardt 
method are implemented in the Optimization Toolbox. Details of the 
implementations are discussed below:

• Gauss-Newton Implementation

• Levenberg-Marquardt Implementation

Gauss-Newton Implementation
The Gauss-Newton method is implemented using polynomial line search 
strategies similar to those discussed for unconstrained optimization. In solving 
the linear least-squares problem (Eq. 3-15), you can avoid exacerbation of the 
conditioning of the equations by using the QR decomposition of  and 
applying the decomposition to  (using the MATLAB \ operator). This is 
in contrast to inverting the explicit matrix, , which can cause 
unnecessary errors to occur.

Robustness measures are included in the method. These measures consist of 
changing the algorithm to the Levenberg-Marquardt method when either the 
step length goes below a threshold value (1e-15 in this implementation) or 
when the condition number of  is below 1e-10. The condition number is a 
ratio of the largest singular value to the smallest.

Levenberg-Marquardt Implementation
The main difficulty in the implementation of the Levenberg-Marquardt 
method is an effective strategy for controlling the size of  at each iteration 
so that it is efficient for a broad spectrum of problems. The method used in this 
implementation is to estimate the relative nonlinearity of  using a linear 
predicted sum of squares and a cubicly interpolated estimate of the 
minimum . In this way the size of  is determined at each iteration. 

The linear predicted sum of squares is calculated as

(3-20)

and the term  is obtained by cubicly interpolating the points and 
. A step length parameter  is also obtained from this interpolation, 

which is the estimated step to the minimum. If  is greater than , 
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then  is reduced, otherwise it is increased. The justification for this is that 
the difference between  and  is a measure of the effectiveness of 
the Gauss-Newton method and the linearity of the problem. This determines 
whether to use a direction approaching the steepest descent direction or the 
Gauss-Newton direction. The formulas for the reduction and increase in , 
which have been developed through consideration of a large number of test 
problems, are shown in the following figure.

Figure 3-5:  Updating λk 

Following the update of , a solution of Eq. 3-19 is used to obtain a search 
direction, . A step length of unity is then taken in the direction , which is 
followed by a line search procedure similar to that discussed for the 
unconstrained implementation. The line search procedure ensures that 

 at each major iteration and the method is therefore a descent 
method. 

The implementation has been successfully tested on a large number of 
nonlinear problems. It has proved to be more robust than the Gauss-Newton 
method and iteratively more efficient than an unconstrained method. The 
Levenberg-Marquardt algorithm is the default method used by lsqnonlin. You 
can select the Gauss-Newton method by setting LevenbergMarquardt to 'off' 
in options.
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Nonlinear Systems of Equations
Nonlinear Systems of Equations
Solving a nonlinear system of equations  involves finding a solution such 
that every equation in the nonlinear system is 0. That is, we have  equations 
and  unknowns and we want to find  such that  where

The assumption is that a zero, or root, of the system exists. These equations 
may represent economic constraints, for example, that must all be satisfied.

Gauss-Newton Method
One approach to solving this problem is to use a Nonlinear Least-Squares 
solver, such those described in “Least-Squares Optimization” on page 3-17. 
Since we assume the system has a root, it would have a small residual, and so 
using the Gauss-Newton Method is effective. In this case, at each iteration we 
solve a linear least-squares problem, as described in Eq. 3-18, to find the search 
direction. (See “Gauss-Newton Method” on page 3-18 for more information.) 

Trust-Region Dogleg Method
Another approach is to solve a linear system of equations to find the search 
direction, namely, Newton’s method says to solve for the search direction  
such that 

where  is the n-by-n Jacobian
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dk
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xk 1+ xk dk+=
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Newton’s method can run into difficulties.  may be singular, and so the 
Newton step  is not even defined. Also, the exact Newton step  may be 
expensive to compute. In addition, Newton’s method may not converge if the 
starting point is far from the solution.

Using trust-region techniques (introduced in “Trust-Region Methods for 
Nonlinear Minimization” on page 4-2) improves robustness when starting far 
from the solution and handles the case when  is singular. To use a 
trust-region strategy, a merit function is needed to decide if  is better or 
worse than . A possible choice is

But a minimum of  is not necessarily a root of .

The Newton step  is a root of

and so it is also a minimum of  where

(3-21)

Then  is a better choice of merit function than , and so the trust 
region subproblem is

(3-22)
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Nonlinear Systems of Equations
such that . This subproblem can be efficiently solved using a dogleg 
strategy.

For an overview of trust-region methods, see Conn [5], and Nocedal [33].

Nonlinear Equations Implementation
Both the Gauss-Newton and trust-region dogleg methods are implemented in 
the Optimization Toolbox. Details of their implementations are discussed 
below.

Gauss-Newton Implementation
The Gauss-Newton implementation is the same as that for least-squares 
optimization. It is described in “Gauss-Newton Implementation” on page 3-21.

Trust-Region Dogleg Implementation
The key feature of this algorithm is the use of the Powell dogleg procedure for 
computing the step , which minimizes Eq. 3-22. For a detailed description, 
see Powell [36]. 

The step  is constructed from a convex combination of a Cauchy step (a step 
along the steepest descent direction) and a Gauss-Newton step for . The 
Cauchy step is calculated as

where  is chosen to minimize Eq. 3-21.

The Gauss-Newton step is calculated by solving

using the MATLAB \ (matrix left division) operator.

The step  is chosen so that

where  is the largest value in the interval [0,1] such that . If  is 
(nearly) singular,  is just the Cauchy direction.
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The dogleg algorithm is efficient since it requires only one linear solve per 
iteration (for the computation of the Gauss-Newton step). Additionally, it can 
be more robust than using the Gauss-Newton method with a line search.
6



Constrained Optimization
Constrained Optimization
In constrained optimization, the general aim is to transform the problem into 
an easier subproblem that can then be solved and used as the basis of an 
iterative process. A characteristic of a large class of early methods is the 
translation of the constrained problem to a basic unconstrained problem by 
using a penalty function for constraints that are near or beyond the constraint 
boundary. In this way the constrained problem is solved using a sequence of 
parameterized unconstrained optimizations, which in the limit (of the 
sequence) converge to the constrained problem. These methods are now 
considered relatively inefficient and have been replaced by methods that have 
focused on the solution of the Kuhn-Tucker (KT) equations. The KT equations 
are necessary conditions for optimality for a constrained optimization problem. 
If the problem is a so-called convex programming problem, that is, and 

, are convex functions, then the KT equations are both 
necessary and sufficient for a global solution point.

Referring to GP (Eq. 3-1), the Kuhn-Tucker equations can be stated as

 (3-23)

in addition to the original constraints in Equation 3-1.

The first equation describes a canceling of the gradients between the objective 
function and the active constraints at the solution point. For the gradients to 
be canceled, Lagrange multipliers ( ) are necessary to balance 
the deviations in magnitude of the objective function and constraint gradients. 
Because only active constraints are included in this canceling operation, 
constraints that are not active must not be included in this operation and so 
are given Lagrange multipliers equal to zero. This is stated implicitly in the 
last two equations of Eq. 3-23.

The solution of the KT equations forms the basis to many nonlinear 
programming algorithms. These algorithms attempt to compute the Lagrange 
multipliers directly. Constrained quasi-Newton methods guarantee 
superlinear convergence by accumulating second order information regarding 

f x( )
Gi x( ) i, 1 … m, ,=

∇f x∗( ) λi
∗ Gi x∗( )∇⋅

i 1=

m

∑+ 0=

λi* Gi x*( )⋅ 0= i 1 … m, ,=

λi∗ 0≥ i me 1 … m, ,+=

λi  i, 1 …m,=
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the KT equations using a quasi-Newton updating procedure. These methods 
are commonly referred to as Sequential Quadratic Programming (SQP) 
methods, since a QP subproblem is solved at each major iteration (also known 
as Iterative Quadratic Programming, Recursive Quadratic Programming, and 
Constrained Variable Metric methods).

This section continues with discussions of the following topics:

• “Sequential Quadratic Programming (SQP)” on page 3-28

• A “Quadratic Programming (QP) Subproblem” on page 3-29

• “SQP Implementation” on page 3-30

• “Simplex Algorithm” on page 3-36

Sequential Quadratic Programming (SQP)
SQP methods represent the state of the art in nonlinear programming 
methods. Schittkowski [38], for example, has implemented and tested a 
version that outperforms every other tested method in terms of efficiency, 
accuracy, and percentage of successful solutions, over a large number of test 
problems. 

Based on the work of Biggs [1], Han [24], and Powell ([34],[35]), the method 
allows you to closely mimic Newton’s method for constrained optimization just 
as is done for unconstrained optimization. At each major iteration, an 
approximation is made of the Hessian of the Lagrangian function using a 
quasi-Newton updating method. This is then used to generate a QP 
subproblem whose solution is used to form a search direction for a line search 
procedure. An overview of SQP is found in Fletcher [15], Gill et al. [21], 
Powell [37], and Schittkowski [25]. The general method, however, is stated 
here.

Given the problem description in GP (Eq. 3-1) the principal idea is the 
formulation of a QP subproblem based on a quadratic approximation of the 
Lagrangian function.

(3-24)L x λ,( ) f x( ) λi gi x( )⋅

i 1=

m

∑+=
8



Constrained Optimization
Here you simplify Eq. 3-1 by assuming that bound constraints have been 
expressed as inequality constraints. You obtain the QP subproblem by 
linearizing the nonlinear constraints.

Quadratic Programming (QP) Subproblem

(3-25)

This subproblem can be solved using any QP algorithm (see, for instance, 
“Quadratic Programming Solution” on page 3-32). The solution is used to form 
a new iterate

The step length parameter is determined by an appropriate line search 
procedure so that a sufficient decrease in a merit function is obtained (see 
“Updating the Hessian Matrix” on page 3-30). The matrix  is a positive 
definite approximation of the Hessian matrix of the Lagrangian function 
(Eq. 3-24).  can be updated by any of the quasi-Newton methods, although 
the BFGS method (see “Updating the Hessian Matrix” on page 3-30) appears 
to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than 
an unconstrained problem using SQP. One of the reasons for this is that, 
because of limits on the feasible area, the optimizer can make informed 
decisions regarding directions of search and step length. 

Consider Rosenbrock’s function (Eq. 3-2) with an additional nonlinear 
inequality constraint, g(x),

(3-26)

This was solved by an SQP implementation in 96 iterations compared to 140 
for the unconstrained case. Figure 3-6 shows the path to the solution point 

 starting at .

   1
2
---dTHkd f xk( )∇ T+ d

d ℜn∈
minimize

gi xk( )∇ Td gi xk( )+ 0= i 1 …me,=

gi xk( )∇ Td gi xk( )+ 0≤ i me 1+ …m,=

xk 1+ xk αkdk+=

αk

Hk

Hk

x1
2 x2

2 1.5–+ 0≤

x 0.9072 0.8228[ , ]= x 1.9– 2[ , ]=
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Figure 3-6:  SQP Method on Nonlinear Linearly Constrained Rosenbrock’s 
Function (Eq.3-2)

SQP Implementation
The SQP implementation consists of three main stages, which are discussed 
briefly in the following subsections:

• Updating of the Hessian matrix of the Lagrangian function

• Quadratic programming problem solution

• Line search and merit function calculation

Updating the Hessian Matrix
At each major iteration a positive definite quasi-Newton approximation of the 
Hessian of the Lagrangian function, H, is calculated using the BFGS method, 
where  is an estimate of the Lagrange multipliers. 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

o

Start Point

o

o

o

o

o

ooooo
ooooo

Constraint boundary

Infeasible region

Feasible region

Solution

λi i 1 … m, ,=( )
0



Constrained Optimization
 where (3-27)

 

Powell [35] recommends keeping the Hessian positive definite even though it 
might be positive indefinite at the solution point. A positive definite Hessian is 
maintained providing  is positive at each update and that H is initialized 
with a positive definite matrix. When  is not positive,  is modified on 
an element-by-element basis so that . The general aim of this 
modification is to distort the elements of , which contribute to a positive 
definite update, as little as possible. Therefore, in the initial phase of the 
modification, the most negative element of  is repeatedly halved. This 
procedure is continued until  is greater than or equal to 1e-5. If, after this 
procedure,  is still not positive, modify  by adding a vector v multiplied 
by a constant scalar w, that is,

(3-28)

where

if  and 

 otherwise

and increase w systematically until  becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If 
Display is set to 'iter' in options, then various information is given such as 
function values and the maximum constraint violation. When the Hessian has 
to be modified using the first phase of the preceding procedure to keep it 
positive definite, then Hessian modified is displayed. If the Hessian has to be 
modified again using the second phase of the approach described above, then 
Hessian modified twice is displayed. When the QP subproblem is infeasible, 

Hk 1+ Hk

qkqk
T

qk
Tsk

-------------
Hk

THk

sk
THksk

--------------------–+=

sk xk 1+ xk–=

qk f xk 1+( )∇ λi gi xk 1+( )∇⋅

i 1=

n

∑ f xk( )∇ λi gi xk( )∇⋅

i 1=

n

∑+
 
 
 
 

–+=

qk
Tsk

qk
Tsk qk

qk
Tsk 0>

qk

qk.∗s·k
qk

Tsk
qk

Tsk qk

qk qk wv+=

vi gi xk 1+( )∇ gi xk 1+( )⋅ gi xk( )∇ gi xk( )  ,⋅–=

qk( )i w⋅ 0< qk( )i sk( )i⋅ 0< i 1 …m,=( )

vi 0=

qk
Tsk
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then infeasible is displayed. Such displays are usually not a cause for concern 
but indicate that the problem is highly nonlinear and that convergence might 
take longer than usual. Sometimes the message no update is displayed, 
indicating that  is nearly zero. This can be an indication that the problem 
setup is wrong or you are trying to minimize a noncontinuous function.

Quadratic Programming Solution
At each major iteration of the SQP method, a QP problem of the following form 
is solved, where refers to the ith row of the m-by-n matrix .

(3-29)

The method used in the Optimization Toolbox is an active set strategy (also 
known as a projection method) similar to that of Gill et al., described in [20] and 
[19]. It has been modified for both Linear Programming (LP) and Quadratic 
Programming (QP) problems. 

The solution procedure involves two phases. The first phase involves the 
calculation of a feasible point (if one exists). The second phase involves the 
generation of an iterative sequence of feasible points that converge to the 
solution. In this method an active set, , is maintained that is an estimate of 
the active constraints (i.e., those that are on the constraint boundaries) at the 
solution point. Virtually all QP algorithms are active set methods. This point 
is emphasized because there exist many different methods that are very 
similar in structure but that are described in widely different terms.

 is updated at each iteration k, and this is used to form a basis for a search 
direction . Equality constraints always remain in the active set . The 
notation for the variable  is used here to distinguish it from  in the major 
iterations of the SQP method. The search direction  is calculated and 
minimizes the objective function while remaining on any active constraint 
boundaries. The feasible subspace for  is formed from a basis  whose 
columns are orthogonal to the estimate of the active set  (i.e., ). 
Thus a search direction, which is formed from a linear summation of any 
combination of the columns of , is guaranteed to remain on the boundaries 
of the active constraints. 

qk
Tsk

Ai A

    q d( )
d ℜn∈

minimize 1
2
---dTHd cTd+=

Aid bi= i 1 … me, ,=

Aid bi≤ i me 1+ … m, ,=

Ak

Ak
d̂k Ak

d̂k dk
d̂k

d̂k Zk
Ak AkZk 0=

Zk
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Constrained Optimization
The matrix  is formed from the last  columns of the QR decomposition 

of the matrix , where l is the number of active constraints and l < m. That 

is,  is given by

(3-30)

where

Once  is found, a new search direction  is sought that minimizes  
where  is in the null space of the active constraints. That is,  is a linear 
combination of the columns of :  for some vector p.

Then if you view the quadratic as a function of p, by substituting for , you 
have

(3-31)

Differentiating this with respect to p yields

(3-32)

 is referred to as the projected gradient of the quadratic function because 
it is the gradient projected in the subspace defined by . The term  is 
called the projected Hessian. Assuming the Hessian matrix H is positive 
definite (which is the case in this implementation of SQP), then the minimum 
of the function q(p) in the subspace defined by  occurs when , 
which is the solution of the system of linear equations

(3-33)

A step is then taken of the form

(3-34)
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At each iteration, because of the quadratic nature of the objective function, 
there are only two choices of step length . A step of unity along  is the exact 
step to the minimum of the function restricted to the null space of . If such 
a step can be taken, without violation of the constraints, then this is the 
solution to QP (Eq. 3-30). Otherwise, the step along  to the nearest 
constraint is less than unity and a new constraint is included in the active set 
at the next iteration. The distance to the constraint boundaries in any direction 

 is given by

(3-35)

which is defined for constraints not in the active set, and where the direction 
 is towards the constraint boundary, i.e., .

When n independent constraints are included in the active set, without location 
of the minimum, Lagrange multipliers, , are calculated that satisfy the 
nonsingular set of linear equations

(3-36)

If all elements of  are positive,  is the optimal solution of QP (Eq. 3-30). 
However, if any component of  is negative, and the component does not 
correspond to an equality constraint, then the corresponding element is deleted 
from the active set and a new iterate is sought. 

Initialization. The algorithm requires a feasible point to start. If the current 
point from the SQP method is not feasible, then you can find a point by solving 
the linear programming problem

(3-37)

The notation indicates the ith row of the matrix A. You can find a feasible 
point (if one exists) to Eq. 3-37 by setting x to a value that satisfies the equality 
constraints. You can determine this value by solving an under- or 
overdetermined set of linear equations formed from the set of equality 
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constraints. If there is a solution to this problem, then the slack variable  is 
set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the 
search direction to the steepest descent direction at each iteration, where  is 
the gradient of the objective function (equal to the coefficients of the linear 
objective function).

(3-38)

If a feasible point is found using the preceding LP method, the main QP phase 

is entered. The search direction  is initialized with a search direction  
found from solving the set of linear equations

(3-39)

where  is the gradient of the objective function at the current iterate  (i.e., 
). 

If a feasible solution is not found for the QP problem, the direction of search for 
the main SQP routine  is taken as one that minimizes . 

Line Search and Merit Function
The solution to the QP subproblem produces a vector , which is used to form 
a new iterate

(3-40)

The step length parameter  is determined in order to produce a sufficient 
decrease in a merit function. The merit function used by Han [24] and 
Powell [35] of the following form is used in this implementation.

(3-41)

Powell recommends setting the penalty parameter

(3-42)
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This allows positive contribution from constraints that are inactive in the QP 
solution but were recently active. In this implementation, the penalty 
parameter  is initially set to

(3-43)

where represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints 
with smaller gradients, which would be the case for active constraints at the 
solution point.

Simplex Algorithm
The simplex algorithm, invented by George Dantzig in 1947, is one of the 
earliest and best known optimization algorithms. The algorithm solves the 
linear programming problem

The algorithm moves along the edges of the polyhedron defined by the 
constraints, from one vertex to another, while decreasing the value of the 
objective function, fT x, at each step. This section describes an improved version 
of the original simplex algorithm that returns a vertex optimal solution.

This section covers the following topics:

• “Main Algorithm” on page 3-37

• “Preprocessing” on page 3-38

• “Using the Simplex Algorithm” on page 3-38

• “Basic and Nonbasic Variables” on page 3-39

• “References” on page 3-40

ri

ri
 f x( )∇  
 gi x( )∇  

--------------------------=

   

fTx
x

min subject to A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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Constrained Optimization
Main Algorithm
The simplex algorithm has two phases:

• Phase 1 — Compute an initial basic feasible point. 

• Phase 2 — Compute the optimal solution to the original problem. 

Note  You cannot supply an initial point x0 for linprog with the simplex 
algorithm. If you pass in x0 as an input argument, linprog ignores x0 and 
computes its own initial point for the algorithm.

Phase 1. In phase 1, the algorithm finds an initial basic feasible solution (see 
“Basic and Nonbasic Variables” on page 3-39 for a definition) by solving an 
auxiliary piecewise linear programming problem. The objective function of the 
auxiliary problem is the linear penalty function , where Pj(xj) is 
defined by 

P(x) measures how much a point x violates the lower and upper bound 
conditions. The auxiliary problem is

The original problem has a feasible basis point if and only if the auxiliary 
problem has minimum value 0. 

The algorithm finds an initial point for the auxiliary problem by a heuristic 
method that adds slack and artificial variables as necessary. The algorithm 
then uses this initial point together with the simplex algorithm to solve the 
auxiliary problem. The optimal solution is the initial point for phase 2 of the 
main algorithm.

P Pj xj( )
j
∑=

Pj xj( )
xj uj–

0
lj xj–

if xj uj>

if lj xj uj≤ ≤

if lj xj>






=

Pj
j
∑x

min subject to A x⋅ b≤
Aeq x⋅ beq=
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Phase 2. In phase 2, the algorithm applies the simplex algorithm, starting at 
the initial point from phase 1, to solve the original problem. At each iteration, 
the algorithm tests the optimality condition and stops if the current solution is 
optimal. If the current solution is not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic 
variables and adds the corresponding column of the nonbasis to the basis 
(see “Basic and Nonbasic Variables” on page 3-39 for definitions). 

2 Chooses a variable, called the leaving variable, from the basic variables and 
removes the corresponding column from the basis. 

3 Updates the current solution and the current objective value. 

The algorithm chooses the entering and the leaving variables by solving two 
linear systems while maintaining the feasibility of the solution. 

Preprocessing
The simplex algorithm uses the same preprocessing steps as the large-scale 
linear programming solver, which are described in “Preprocessing” on 
page 4-16. In addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates 
their corresponding rows. 

2 For each constraint equation , where a is a row of Aeq, the 
algorithm computes the lower and upper bounds of the linear combination 

 as rlb and rub if the lower and upper bounds are finite. If either rlb or 
rub equals b, the constraint is called a forcing constraint. The algorithm sets 
each variable corresponding to a nonzero coefficient of  equal its upper 
or lower bound, depending on the forcing constraint. The algorithm then 
deletes the columns corresponding to these variables and deletes the rows 
corresponding to the forcing constraints. 

Using the Simplex Algorithm
To use the simplex method, set 'LargeScale' to 'off' and 'Simplex' to 'on' 
in options.

options = optimset('LargeScale', 'off', 'Simplex', 'on')

a x⋅ b=

a x⋅

a x⋅
8



Constrained Optimization
Then call the function linprog with the options input argument. See the 
reference page for linprog for more information.

linprog returns empty output arguments for x and fval if it detects 
infeasibility or unboundedness in the preprocessing procedure. linprog 
returns the current point when it

• Exceeds the maximum number of iterations

• Detects that the problem is infeasible or unbounded in phases 1 or 2 

When the problem is unbounded, linprog returns x and fval in the unbounded 
direction.

Basic and Nonbasic Variables
This section defines the terms basis, nonbasis, and basic feasible solutions for 
a linear programming problem. The definition assumes that the problem is 
given in the following standard form:

(Note that A and b are not the matrix and vector defining the inequalities in 
the original problem.) Assume that A is an m-by-n matrix, of rank m < n, whose 
columns are {a1, a2, ..., an}. Suppose that  is a basis for the 
column space of A, with index set B = {i1, i2, ..., im}, and that N = {1, 2, ..., n}\B 
is the complement of B. The submatrix AB is called a basis and the 
complementary submatrix AN is called a nonbasis. The vector of basic variables 
is xB and the vector of nonbasic variables is xN. At each iteration in phase 2, the 
algorithm replaces one column of the current basis with a column of the 
nonbasis and updates the variables xB and xN accordingly.

If x is a solution to  and all the nonbasic variables in xN are equal to 
either their lower or upper bounds, x is called a basic solution. If, in addition, 
the basic variables in xB satisfy their lower and upper bounds, so that x is a 
feasible point, x is called a basic feasible solution.

fTx
x

min such that A x⋅ b=
lb x ub≤ ≤

ai1
ai2

… aim
, , ,{ }

A x⋅ b=
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Multiobjective Optimization
Multiobjective Optimization
The rigidity of the mathematical problem posed by the general optimization 
formulation given in GP (Eq. 3-1) is often remote from that of a practical design 
problem. Rarely does a single objective with several hard constraints 
adequately represent the problem being faced. More often there is a vector of 
objectives that must be traded off in some 
way. The relative importance of these objectives is not generally known until 
the system’s best capabilities are determined and tradeoffs between the 
objectives fully understood. As the number of objectives increases, tradeoffs are 
likely to become complex and less easily quantified. There is much reliance on 
the intuition of the designer and his or her ability to express preferences 
throughout the optimization cycle. Thus, requirements for a multiobjective 
design strategy are to enable a natural problem formulation to be expressed, 
yet to be able to solve the problem and enter preferences into a numerically 
tractable and realistic design problem. 

This section includes

• An introduction to multiobjective optimization, which looks at a number of 
alternative methods 

• A discussion of the goal attainment method, which can be posed as a 
nonlinear programming problem 

• Algorithm improvements to the SQP method, for use with the goal 
attainment method

Introduction
Multiobjective optimization is concerned with the minimization of a vector of 
objectives F(x) that can be the subject of a number of constraints or bounds.

(3-44)

Note that, because F(x) is a vector, if any of the components of F(x) are 
competing, there is no unique solution to this problem. Instead, the concept of 

F x( ) F1 x( ) F2 x( ) … Fm x( ), , ,{ }=
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x ℜn∈

minimize

Gi x( ) 0= i 1 … me, ,=
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xl x xu≤ ≤
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noninferiority [41] (also called Pareto optimality [4],[6]) must be used to 
characterize the objectives. A noninferior solution is one in which an 
improvement in one objective requires a degradation of another. To define this 
concept more precisely, consider a feasible region, , in the parameter space 

 that satisfies all the constraints, i.e.,

(3-45)

subject to 

This allows us to define the corresponding feasible region for the objective 
function space .

 where  subject to (3-46)

The performance vector, F(x), maps parameter space into objective function 
space as is represented for a two-dimensional case in Figure 3-7.

Figure 3-7:  Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition: A point  is a noninferior solution if for some neighborhood of 
 there does not exist a  such that  and 
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(3-47)

In the two-dimensional representation of Figure 3-8, Set of Noninferior 
Solutions, the set of noninferior solutions lies on the curve between C and D. 
Points A and B represent specific noninferior points. 

Figure 3-8:  Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement in one 
objective, , requires a degradation in the other objective, , i.e., 

.

Since any point in  that is not a noninferior point represents a point in which 
improvement can be attained in all the objectives, it is clear that such a point 
is of no value. Multiobjective optimization is, therefore, concerned with the 
generation and selection of noninferior solution points. The techniques for 
multiobjective optimization are wide and varied and all the methods cannot be 
covered within the scope of this toolbox. Subsequent sections describe some of 
the techniques.

Weighted Sum Strategy
The weighted sum strategy converts the multiobjective problem of minimizing 
the vector  into a scalar problem by constructing a weighted sum of all the 
objectives.
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(3-48)

The problem can then be optimized using a standard unconstrained 
optimization algorithm. The problem here is in attaching weighting coefficients 
to each of the objectives. The weighting coefficients do not necessarily 
correspond directly to the relative importance of the objectives or allow 
tradeoffs between the objectives to be expressed. Further, the noninferior 
solution boundary can be nonconcurrent, so that certain solutions are not 
accessible. 

This can be illustrated geometrically. Consider the two-objective case in 
Figure 3-9, Geometrical Representation of the Weighted Sum Method. In the 
objective function space a line, L,  is drawn. The minimization of 
Eq. 3-48 can be interpreted as finding the value of c for which L just touches 
the boundary of  as it proceeds outwards from the origin. Selection of weights 

 and , therefore, defines the slope of L, which in turn leads to the solution 
point where L touches the boundary of . 

Figure 3-9:  Geometrical Representation of the Weighted Sum Method

The aforementioned convexity problem arises when the lower boundary of  is 
nonconvex as shown in Figure 3-10, Nonconvex Solution Boundary. In this case 
the set of noninferior solutions between A and B is not available. 

   f x( ) wi Fi x( )⋅

i 1=

m

∑=
x Ω∈

minimize

wTF x( ) c=

Λ
w1 w2

Λ

L

Λ

F
2

F
1
wTF x( ) c=

Λ

4



Multiobjective Optimization
Figure 3-10:  Nonconvex Solution Boundary

ε-Constraint Method
A procedure that overcomes some of the convexity problems of the weighted 
sum technique is the -constraint method. This involves minimizing a primary 
objective, , and expressing the other objectives in the form of inequality 
constraints

(3-49)

subject to 

Figure 3-11, Geometrical Representation of e-Constraint Method, shows a 
two-dimensional representation of the -constraint method for a two-objective 
problem. 

B

A
L

Λ

F2

F1

•

•

ε
Fp

   Fp x( )
x Ω∈

minimize

Fi x( ) εi≤ i 1 … m, ,= i p≠

ε
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Figure 3-11:  Geometrical Representation of ε-Constraint Method

This approach is able to identify a number of noninferior solutions on a 
nonconvex boundary that are not obtainable using the weighted sum 
technique, for example, at the solution point  and . A 
problem with this method is, however, a suitable selection of  to ensure a 
feasible solution. A further disadvantage of this approach is that the use of 
hard constraints is rarely adequate for expressing true design objectives. 
Similar methods exist, such as that of Waltz [40], that prioritize the objectives. 
The optimization proceeds with reference to these priorities and allowable 
bounds of acceptance. The difficulty here is in expressing such information at 
early stages of the optimization cycle.

In order for the designers’ true preferences to be put into a mathematical 
description, the designers must express a full table of their preferences and 
satisfaction levels for a range of objective value combinations. A procedure 
must then be realized that is able to find a solution with reference to this. Such 
methods have been derived for discrete functions using the branches of 
statistics known as decision theory and game theory (for a basic introduction, 
see [26]). Implementation for continuous functions requires suitable 
discretization strategies and complex solution methods. Since it is rare for the 
designer to know such detailed information, this method is deemed impractical 
for most practical design problems. It is, however, seen as a possible area for 
further research. 

Λ

F
1s

   

F1

F2ε2

  F1 x( )
x Ω∈

minimize subject to F2x  ε2≤

F1 F1s= F2 ε2=
ε
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Multiobjective Optimization
What is required is a formulation that is simple to express, retains the 
designers’ preferences, and is numerically tractable.

Goal Attainment Method
The method described here is the goal attainment method of Gembicki [18]. 
This involves expressing a set of design goals, , which is 
associated with a set of objectives, . The 
problem formulation allows the objectives to be under- or overachieved, 
enabling the designer to be relatively imprecise about initial design goals. The 
relative degree of under- or overachievement of the goals is controlled by a 
vector of weighting coefficients, , and is expressed as a 
standard optimization problem using the following formulation.

(3-50)

such that 

The term  introduces an element of slackness into the problem, which 
otherwise imposes that the goals be rigidly met. The weighting vector, w, 
enables the designer to express a measure of the relative tradeoffs between the 
objectives. For instance, setting the weighting vector w equal to the initial 
goals indicates that the same percentage under- or overattainment of the goals, 

, is achieved. You can incorporate hard constraints into the design by setting 
a particular weighting factor to zero (i.e., ). The goal attainment method 
provides a convenient intuitive interpretation of the design problem, which is 
solvable using standard optimization procedures. Illustrative examples of the 
use of the goal attainment method in control system design can be found in 
Fleming ([12],[13]). 

The goal attainment method is represented geometrically in Figure 3-12, 
Geometrical Representation of Goal Attainment Method, for the 
two-dimensional problem.

F* F1
* F2

* … Fm
* ,,,{ }=

F x( ) F1 x( ) F2 x( ) … Fm x( ) ,,,{ }=

w w1 w2 … wm, , ,{ }=

  γ
γ ℜ∈  x Ω∈,

minimize

Fi x( ) wiγ– Fi
*≤ i 1 … m, ,=

wiγ

F* 

wi 0=
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Figure 3-12:  Geometrical Representation of Goal Attainment Method

Specification of the goals, , defines the goal point, P. The weighting 
vector defines the direction of search from P to the feasible function space, 

. During the optimization  is varied, which changes the size of the 
feasible region. The constraint boundaries converge to the unique solution 
point . 

Algorithm Improvements for Goal Attainment 
Method
The goal attainment method has the advantage that it can be posed as a 
nonlinear programming problem. Characteristics of the problem can also be 
exploited in a nonlinear programming algorithm. In sequential quadratic 
programming (SQP), the choice of merit function for the line search is not easy 
because, in many cases, it is difficult to “define” the relative importance 
between improving the objective function and reducing constraint violations. 
This has resulted in a number of different schemes for constructing the merit 
function (see, for example, Schittkowski [38]). In goal attainment 
programming there might be a more appropriate merit function, which you can 
achieve by posing Eq. 3-50 as the minimax problem

(3-51)
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where 

Following the argument of Brayton et al. [2] for minimax optimization using 
SQP, using the merit function of Eq. 3-41 for the goal attainment problem of 
Eq. 3-51 gives 

(3-52)

When the merit function of Eq. 3-52 is used as the basis of a line search 
procedure, then, although  might decrease for a step in a given search 
direction, the function max  might paradoxically increase. This is accepting 
a degradation in the worst case objective. Since the worst case objective is 
responsible for the value of the objective function , this is accepting a step that 
ultimately increases the objective function to be minimized. Conversely, 

 might increase when max  decreases, implying a rejection of a step 
that improves the worst case objective. 

Following the lines of Brayton et al. [2], a solution is therefore to set  equal 
to the worst case objective, i.e.,

(3-53)

A problem in the goal attainment method is that it is common to use a 
weighting coefficient equal to zero to incorporate hard constraints. The merit 
function of Eq. 3-53 then becomes infinite for arbitrary violations of the 
constraints. To overcome this problem while still retaining the features of 
Eq. 3-53, the merit function is combined with that of Eq. 3-42, giving the 
following:

(3-54)

Another feature that can be exploited in SQP is the objective function . From 
the KT equations (Eq. 3-23) it can be shown that the approximation to the 
Hessian of the Lagrangian, H, should have zeros in the rows and columns 

Λi
Fi x( ) Fi

*–
wi

--------------------------= i 1 … m, ,=

ψ x γ,( ) γ ri  0  , Fi x( ) wiγ– Fi
*–{ }

 
max⋅

i 1=

m

∑+=

ψ x γ,( )
Λi

γ

ψ x γ,( ) Λi

ψ x( )

ψ x( )  Λii
max=

ψ x( )
ri  0  , Fi x( ) wiγ– Fi

*–{ }
 

max⋅ if wi 0=

 Λii
max   i, 1 … m, ,= otherwise






i 1=

m

∑=

γ

3-49



3 Standard Algorithms

3-5
associated with the variable . However, this property does not appear if H is 
initialized as the identity matrix. H is therefore initialized and maintained to 
have zeros in the rows and columns associated with .

These changes make the Hessian, H, indefinite. Therefore H is set to have 
zeros in the rows and columns associated with , except for the diagonal 
element, which is set to a small positive number (e.g., 1e-10). This allows use 
of the fast converging positive definite QP method described in “Quadratic 
Programming Solution” on page 3-32. 

The preceding modifications have been implemented in fgoalattain and have 
been found to make the method more robust. However, because of the rapid 
convergence of the SQP method, the requirement that the merit function 
strictly decrease sometimes requires more function evaluations than an 
implementation of SQP using the merit function of Eq. 3-41. 

γ

γ

γ

0
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Large-Scale Algorithms

Large-Scale Algorithms describes the methods used in the Optimization Toolbox to solve large-scale 
optimization problems. It consists of these sections:

Trust-Region Methods for Nonlinear 
Minimization (p. 4-2)

Introduces the trust-regions, and describes the use of 
trust-regions for unconstrained nonlinear minimization.

Preconditioned Conjugate Gradients 
(p. 4-5)

Presents an algorithm that uses Preconditioned 
Conjugate Gradients (PCG) for solving large symmetric 
positive definite systems of linear equations.

Linearly Constrained Problems (p. 4-7) Discusses the solution of linear equality constrained 
and box constrained minimization problems.

Nonlinear Least-Squares (p. 4-10) Describes the solution of nonlinear least-squares 
problems.

Quadratic Programming (p. 4-11) Describes the solution of minimization problems with 
quadratic objective functions.

Linear Least-Squares (p. 4-12) Describes the solution of linear least-squares problems.

Large-Scale Linear Programming 
(p. 4-13)

Describes the use of LIPSOL (Linear Interior Point 
Solver) for the solution of large-scale linear 
programming problems. 

Selected Bibliography (p. 4-17) Lists published materials that support concepts 
implemented in the large-scale algorithms.
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Trust-Region Methods for Nonlinear Minimization
Many of the methods used in the Optimization Toolbox are based on 
trust-regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the 
unconstrained minimization problem, , where the function takes 
vector arguments and returns scalars. Suppose you are at a point  in n-space 
and you want to improve, i.e., move to a point with a lower function value. The 
basic idea is to approximate  with a simpler function  which reasonably 
reflects the behavior of function  in a neighborhood  around the point x. This 
neighborhood is the trust region. A trial step  is computed by minimizing (or 
approximately minimizing) over N. This is the trust-region subproblem,

(4-1)

The current point is updated to be  if ; otherwise, the current 
point remains unchanged and N, the region of trust, is shrunk and the trial 
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing 
 are how to choose and compute the approximation  (defined at the 

current point ), how to choose and modify the trust region N, and how 
accurately to solve the trust-region subproblem. This section focuses on the 
unconstrained problem. Later sections discuss additional complications due to 
the presence of constraints on the variables.

In the standard trust-region method ([8]), the quadratic approximation  is 
defined by the first two terms of the Taylor approximation to  at x; the 
neighborhood  is usually spherical or ellipsoidal in shape. Mathematically 
the trust-region subproblem is typically stated

(4-2)

where  is the gradient of  at the current point x,  is the Hessian matrix 
(the symmetric matrix of second derivatives),  is a diagonal scaling matrix, 

 is a positive scalar, and || . || is the 2-norm. Good algorithms exist for solving 
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Trust-Region Methods for Nonlinear Minimization
Eq. 4-2 (see [8]); such algorithms typically involve the computation of a full 
eigensystem and a Newton process applied to the secular equation

Such algorithms provide an accurate solution to Eq. 4-2. However, they require 
time proportional to several factorizations of H. Therefore, for large-scale 
problems a different approach is needed. Several approximation and heuristic 
strategies, based on Eq. 4-2, have been proposed in the literature ([2],[10]). The 
approximation approach followed in the Optimization Toolbox is to restrict the 
trust-region subproblem to a two-dimensional subspace  ([1],[2]). Once the 
subspace  has been computed, the work to solve Eq. 4-2 is trivial even if full 
eigenvalue/eigenvector information is needed (since in the subspace, the 
problem is only two-dimensional). The dominant work has now shifted to the 
determination of the subspace.

The two-dimensional subspace  is determined with the aid of a 
preconditioned conjugate gradient process described below. The toolbox 
assigns , where  is in the direction of the gradient g, and  is 
either an approximate Newton direction, i.e., a solution to

(4-3)

or a direction of negative curvature,

(4-4)

The philosophy behind this choice of  is to force global convergence (via the 
steepest descent direction or negative curvature direction) and achieve fast 
local convergence (via the Newton step, when it exists).

A framework for the Optimization Toolbox approach to unconstrained 
minimization using trust-region ideas is now easy to describe:

• Formulate the two-dimensional trust-region subproblem.

• Solve Eq. 4-2 to determine the trial step .

• If  then .

• Adjust .

These four steps are repeated until convergence. The trust-region dimension  
is adjusted according to standard rules. In particular, it is decreased if the trial 

1
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step is not accepted, i.e.,  See [6],[9] for a discussion of this 
aspect.

The Optimization Toolbox treats a few important special cases of f with 
specialized functions: nonlinear least-squares, quadratic functions, and linear 
least-squares. However, the underlying algorithmic ideas are the same as for 
the general case. These special cases are discussed in later sections.

f x s+( ) f x( ).≥



Preconditioned Conjugate Gradients
Preconditioned Conjugate Gradients
A popular way to solve large symmetric positive definite systems of linear 
equations  is the method of Preconditioned Conjugate Gradients 
(PCG). This iterative approach requires the ability to calculate matrix-vector 
products of the form  where  is an arbitrary vector. The symmetric 
positive definite matrix M is a preconditioner for H. That is,  where 

 is a well-conditioned matrix or a matrix with clustered eigenvalues. 

Algorithm
The Optimization Toolbox uses this PCG algorithm, which it refers to as 
Algorithm PCG.

% Initializations
r = -g; p = zeros(n,1); 
% Precondition 
z = M\r; inner1 = r'*z; inner2 = 0; d = z;
% Conjugate gradient iteration
for k = 1:kmax
   if k > 1
       beta = inner1/inner2;
       d = z + beta*d;
   end
   w = H*d; denom = d'*w;
   if denom <= 0 
       p = d/norm(d); % Direction of negative/zero curvature
       break % Exit if zero/negative curvature detected
   else
       alpha = inner1/denom;
       p = p + alpha*d;
       r = r - alpha*w;
   end
   z = M\r;
   if norm(z) <= tol % Exit if Hp=-g solved within tolerance
       break
   end
   inner2 = inner1;
   inner1 = r'*z;
end

Hp g–=

H v⋅ v
M C2=

C 1– HC 1–
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In a minimization context, you can assume that the Hessian matrix  is 
symmetric. However,  is guaranteed to be positive definite only in the 
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of 
negative (or zero) curvature is encountered, i.e., . The PCG output 
direction, p, is either a direction of negative curvature or an approximate (tol 
controls how approximate) solution to the Newton system  In either 
case  is used to help define the two-dimensional subspace used in the 
trust-region approach discussed in “Trust-Region Methods for Nonlinear 
Minimization” on page 4-2.

H
H

dTHd 0≤

Hp g.–=
p



Linearly Constrained Problems
Linearly Constrained Problems
Linear constraints complicate the situation described for unconstrained 
minimization. However, the underlying ideas described previously can be 
carried through in a clean and efficient way. The large-scale methods in the 
Optimization Toolbox generate strictly feasible iterates: 

• A projection technique is used for linear equality constraints.

• Reflections are used with simple box constraints.

Linear Equality Constraints
The general linear equality constrained minimization problem can be written

(4-5)

where  is an m-by-n matrix ( ). The Optimization Toolbox preprocesses 
 to remove strict linear dependencies using a technique based on the 

LU-factorization of  [6]. Here  is assumed to be of rank m.

The method used to solve Eq. 4-5 differs from the unconstrained approach in 
two significant ways. First, an initial feasible point  is computed, using a 
sparse least-squares step, so that . Second, Algorithm PCG is replaced 
with Reduced Preconditioned Conjugate Gradients (RPCG), see [6], in order to 
compute an approximate reduced Newton step (or a direction of negative 
curvature in the null space of ). The key linear algebra step involves solving 
systems of the form

(4-6)

where  approximates  (small nonzeros of  are set to zero provided rank is 
not lost) and  is a sparse symmetric positive-definite approximation to H, i.e., 

. See [6] for more details.

Box Constraints
The box constrained problem is of the form

(4-7)

min f x( )  such that  Ax b={ }
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where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or 
all) of the components of  can be equal to  and some (or all) of the 
components of  can be equal to  The method generates a sequence of 
strictly feasible points. Two techniques are used to maintain feasibility while 
achieving robust convergence behavior. First, a scaled modified Newton step 
replaces the unconstrained Newton step (to define the two-dimensional 
subspace ). Second, reflections are used to increase the stepsize. 

The scaled modified Newton step arises from examining the Kuhn-Tucker 
necessary conditions for Eq. 4-7,

(4-8)

where 

and the vector  is defined below, for each :

• If  and  then 

• If  and  then 

• If  and  then 

• If  and  then 

The nonlinear system Eq. 4-8 is not differentiable everywhere. 
Nondifferentiability occurs when  You can avoid such points by 
maintaining strict feasibility, i.e., restricting .

The scaled modified Newton step  for the nonlinear system of equations 
given by Eq. 4-8 is defined as the solution to the linear system

(4-9)

at the kth iteration, where

(4-10)
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(4-11)

Here  plays the role of the Jacobian of  Each diagonal component of the 
diagonal matrix  equals 0, -1, or 1. If all the components of l and u are finite, 

 At a point where ,  might not be differentiable. 
 is defined at such a point. Nondifferentiability of this type is not a 

cause for concern because, for such a component, it is not significant which 
value  takes. Further,  will still be discontinuous at this point, but the 
function  is continuous.

Second, reflections are used to increase the stepsize. A (single) reflection step 
is defined as follows. Given a step  that intersects a bound constraint, 
consider the first bound constraint crossed by p; assume it is the ith bound 
constraint (either the ith upper or ith lower bound). Then the reflection step 

 except in the ith component, where .

M̂ D 1– HD 1– diag(g )J v+=

J v v .
Jv

J v diag sign g( )( ).= gi 0= vi
Jii

v 0=

vi vi
vi gi⋅

p

pR p= pi
R pi–=
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Nonlinear Least-Squares
An important special case for f(x) is the nonlinear least-squares problem

(4-12)

where  is a vector-valued function with component i of  equal to  
The basic method used to solve this problem is the same as in the general case 
described in “Trust-Region Methods for Nonlinear Minimization” on page 4-2. 
However, the structure of the nonlinear least-squares problem is exploited to 
enhance efficiency. In particular, an approximate Gauss-Newton direction, i.e., 
a solution s to

(4-13)

(where J is the Jacobian of ) is used to help define the two-dimensional 
subspace . Second derivatives of the component function  are not used. 

In each iteration the method of preconditioned conjugate gradients is used to 
approximately solve the normal equations, i.e.,

although the normal equations are not explicitly formed.

f x( ) 1
2
--- fi

2 x( )
i
∑

1
2
--- F x( ) 2

2= =

F x( ) F x( ) fi x( ).

min Js F+ 2
2

F x( )
S fi x( )

JTJs JTF–=
0



Quadratic Programming
Quadratic Programming 
In this case the function f(x) is the quadratic equation

The subspace trust-region method is used to determine a search direction. 
However, instead of restricting the step to (possibly) one reflection step, as in 
the nonlinear minimization case, a piecewise reflective line search is conducted 
at each iteration. See [5] for details of the line search.

q x( ) 1
2
---xTHx f Tx+=
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Linear Least-Squares
In this case the function f(x) to be solved is 

The algorithm generates strictly feasible iterates converging, in the limit, to a 
local solution. Each iteration involves the approximate solution of a large 
linear system (of order n, where n is the length of x). The iteration matrices 
have the structure of the matrix C. In particular, the method of preconditioned 
conjugate gradients is used to approximately solve the normal equations, i.e.,

although the normal equations are not explicitly formed.

The subspace trust-region method is used to determine a search direction. 
However, instead of restricting the step to (possibly) one reflection step, as in 
the nonlinear minimization case, a piecewise reflective line search is conducted 
at each iteration, as in the quadratic case. See [5] for details of the line search. 
Ultimately, the linear systems represent a Newton approach capturing the 
first-order optimality conditions at the solution, resulting in strong local 
convergence rates.

f x( ) 1
2
--- Cx d+

2

2
=

CTCx C– Td=
2



Large-Scale Linear Programming
Large-Scale Linear Programming
Linear programming is defined as

(4-14)

The large-scale method is based on LIPSOL ([11]), which is a variant of 
Mehrotra’s predictor-corrector algorithm ([7]), a primal-dual interior-point 
method.

This section continues with descriptions of

• The main algorithm

• Preprocessing steps

Main Algorithm
The algorithm begins by applying a series of preprocessing steps (see 
“Preprocessing” on page 4-16). After preprocessing, the problem has the form

(4-15)

The upper bounds constraints are implicitly included in the constraint matrix 
A. With the addition of primal slack variables s, Eq. 4-15 becomes

(4-16)

which is referred to as the primal problem: x consists of the primal variables 
and s consists of the primal slack variables. The dual problem is 

(4-17)

min  f Tx   such that 
Aeq x⋅ beq=

Aineq x⋅ bineq≤
l x u≤ ≤ 

 
 
 

min  f Tx such that 
A x⋅ b=
0 x u≤ ≤ 

 

min  f Tx such that 
A x⋅ b=
x s+ u=
x 0≥ s 0≥, 
 
 
 

max  bTy uTw– such that AT y⋅ w– z+ f=
z 0≥ w 0≥,
4-13
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where y and w consist of the dual variables and z consists of the dual slacks. 
The optimality conditions for this linear program, i.e., the primal Eq. 4-16 and 
the dual Eq. 4-17, are

(4-18)

where  and  denote component-wise multiplication. 

The quadratic equations  and  are called the 
complementarity conditions for the linear program; the other (linear) equations 
are called the feasibility conditions. The quantity 

 

is the duality gap, which measures the residual of the complementarity portion 
of F when .

The algorithm is a primal-dual algorithm, meaning that both the primal and 
the dual programs are solved simultaneously. It can be considered a 
Newton-like method, applied to the linear-quadratic system 

 in Eq. 4-18, while at the same time keeping the iterates x, 
z, w, and s positive, thus the name interior-point method. (The iterates are in 
the strictly interior region represented by the inequality constraints in 
Eq. 4-16.)

The algorithm is a variant of the predictor-corrector algorithm proposed by 
Mehrotra. Consider an iterate , where  
First compute the so-called prediction direction

which is the Newton direction; then the so-called corrector direction

F x y z s w, , , ,( )

A x b–⋅
x s u–+

AT y w– z f–+⋅
xizi

siwi 
 
 
 
 
 
 
 
 

0= =

x 0 z 0 s 0 w 0≥,≥,≥,≥

xizi siwi

xizi 0= siwi 0=

xTz sTw+

x z s w, , ,( ) 0≥

F x y z s w, , , ,( ) 0=

v x   y   z   s   w;;;;[ ]= x   z   s   w;;;[ ] 0.>

∆vp FT v( )( )
1–

– F v( )=

∆vc FT v( )( )
1–

– F v ∆vp+( )( ) µê–=
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Large-Scale Linear Programming
where  is called the centering parameter and must be chosen carefully. 
is a zero-one vector with the ones corresponding to the quadratic equations 

in F(v), i.e., the perturbations are only applied to the complementarity 
conditions, which are all quadratic, but not to the feasibility conditions, which 
are all linear. The two directions are combined with a step-length parameter 

 and update v to obtain the new iterate 

where the step-length parameter  is chosen so that

satisfies

In solving for the preceding steps, the algorithm computes a (sparse) direct 
factorization on a modification of the Cholesky factors of  If A has dense 
columns, it instead uses the Sherman-Morrison formula, and if that solution is 
not adequate (the residual is too large), it uses preconditioned conjugate 
gradients to find a solution.

The algorithm then repeats these steps until the iterates converge. The main 
stopping criteria is a standard one

where

are the primal residual, dual residual, and upper-bound feasibility 
respectively, and

µ 0>
ê

α 0> v+

v+ v α ∆vp ∆vc+( )+=

α

v+ x+   y+   z+   s+   w+;;;;[ ]=

x+   z+   s+   w+;;;[ ] 0>

A AT.⋅

rb

1 b,( )max
------------------------------

rf

1 f,( )max
-----------------------------

ru

1 u,( )max
------------------------------ fTx bTy– uTw+

1 fTx bTy uTw–, ,( )max
--------------------------------------------------------------------+ + + tol≤

rb Ax b–=

rf ATy w– z f–+=

ru x s u–+=

fTx bTy– uTw+
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is the difference between the primal and dual objective values, and tol is some 
tolerance. The sum in the stopping criteria measures the total relative errors 
in the optimality conditions in Eq. 4-18.

Preprocessing
A number of preprocessing steps occur before the actual iterative algorithm 
begins. The resulting transformed problem is one where

• All variables are bounded below by zero.

• All constraints are equalities.

• Fixed variables, those with equal upper and lower bounds, are removed.

• Rows of all zeros in the constraint matrix are removed.

• The constraint matrix has full structural rank. 

• Columns of all zeros in the constraint matrix are removed. 

• When a significant number of singleton rows exist in the constraint matrix, 
the associated variables are solved for and the rows removed.

While these preprocessing steps can do much to speed up the iterative part of 
the algorithm, if the Lagrange multipliers are required, the preprocessing 
steps must be undone since the multipliers calculated during the algorithm are 
for the transformed problem, and not the original. Thus, if the multipliers are 
not requested, this transformation back is not computed, and might save some 
time computationally.
6
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Function Reference

Functions — Categorical List (p. 5-2) Lists the functions in the toolbox by category.

Function Arguments (p. 5-5) Describes the input and output arguments of the toolbox 
functions.

Optimization Options (p. 5-9) Describes optimization options.

Functions — Alphabetical List (p. 5-25) Lists the functions in the toolbox alphabetically.
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Functions — Categorical List
The Optimization Toolbox provides these categories of functions.

Minimization

Equation Solving

Minimization Minimization functions

Equation Solving Solution of linear and nonlinear equations

Least Squares (Curve Fitting) Linear and nonlinear curve fitting

Utility Setting and retrieving optimization options

Demos of Large-Scale Methods Demonstration programs of large-scale 
methods

Demos of Medium-Scale 
Methods

Demonstration programs of medium-scale 
methods

bintprog Binary integer programming

fgoalattain Multiobjective goal attainment

fminbnd Scalar nonlinear minimization with bounds

fmincon Constrained nonlinear minimization

fminimax Minimax optimization

fminsearch,
fminunc

Unconstrained nonlinear minimization

fseminf Semi-infinite minimization

linprog Linear programming

quadprog Quadratic programming

\ Use \ (left division) to solve linear equations. See the 
Arithmetic Operators reference page in the online 
MATLAB documentation.

fsolve Nonlinear equation solving



Functions — Categorical List
Least Squares (Curve Fitting)

Utility

Demos of Large-Scale Methods
From the MATLAB Help browser, click the demo name to run the demo. Look 
for information and additional instructions in the MATLAB Command 
Window.

fzero Scalar nonlinear equation solving

\ Use \ (left division) for linear least squares with no 
constraints. See the Arithmetic Operators reference 
page.

lsqlin Constrained linear least squares

lsqcurvefit Nonlinear curve fitting

lsqnonlin Nonlinear least squares

lsqnonneg Nonnegative linear least squares

fzmult Multiplication with fundamental nullspace basis

gangstr Zero out “small” entries subject to structural rank

optimget Get optimization options values

optimset Create or edit optimization options structure

circustent Quadratic programming to find shape of a circus tent

molecule Molecule conformation solution using unconstrained 
nonlinear minimization

optdeblur Image deblurring using bounded linear least squares
5-3
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Demos of Medium-Scale Methods
From the MATLAB Help browser, click the demo name to run the demo. Look 
for information and additional instructions in the MATLAB Command 
Window.

bandemo Minimization of the banana function

dfildemo Finite-precision filter design (requires the Signal 
Processing Toolbox)

goaldemo Goal attainment example

optdemo Menu of demo routines

tutdemo Script for the medium-scale algorithms. The script 
follows the “Tutorial” chapter of the Optimization 
Toolbox User’s Guide.



Function Arguments
Function Arguments
The Optimization Toolbox functions use these arguments. 

Individual function reference pages provide function-specific information, as 
necessary.

Input Arguments

Input Arguments General descriptions of input arguments used by toolbox functions. 

Output Arguments General descriptions of output arguments used by toolbox functions. 

Argument Description Used by Functions

A, b The matrix A and vector b are, respectively, the 
coefficients of the linear inequality constraints and the 
corresponding right-side vector: A*x <= b.

fgoalattain, 
fmincon, fminimax, 
fseminf, linprog, 
lsqlin, quadprog

Aeq, beq The matrix Aeq and vector beq are, respectively, the 
coefficients of the linear equality constraints and the 
corresponding right-side vector: Aeq*x = beq.

fgoalattain, 
fmincon, fminimax, 
fseminf, linprog, 
lsqlin, quadprog

C, d The matrix C and vector d are, respectively, the 
coefficients of the over or underdetermined linear system 
and the right-side vector to be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the linear term in the linear 
equation f'*x or the quadratic equation x'*H*x+f'*x. 

linprog, quadprog

fun The function to be optimized. fun is a function handle for 
an M-file function or a function handle for an anonymous 
function. See the individual function reference pages for 
more information on fun.

fgoalattain, 
fminbnd, fmincon, 
fminimax, 
fminsearch, 
fminunc, fseminf, 
fsolve, fzero, 
lsqcurvefit, 
lsqnonlin
5-5
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goal Vector of values that the objectives attempt to attain. The 
vector is the same length as the number of objectives.

fgoalattain

H The matrix of coefficients for the quadratic terms in the 
quadratic equation x'*H*x+f'*x. H must be symmetric.

quadprog

lb, ub Lower and upper bound vectors (or matrices). The 
arguments are normally the same size as x. However, if lb 
has fewer elements than x, say only m, then only the first 
m elements in x are bounded below; upper bounds in ub 
can be defined in the same manner. You can also specify 
unbounded variables using -Inf (for lower bounds) or Inf 
(for upper bounds). For example, if lb(i) = -Inf, the 
variable x(i) is unbounded below.

fgoalattain, 
fmincon, fminimax, 
fseminf, linprog, 
lsqcurvefit, 
lsqlin, lsqnonlin, 
quadprog

nonlcon The function that computes the nonlinear inequality and 
equality constraints. “Avoiding Global Variables via 
Anonymous and Nested Functions” on page 2-19 explains 
how to parameterize the function nonlcon, if necessary.

See the individual reference pages for more information 
on nonlcon.

fgoalattain, 
fmincon, fminimax

ntheta The number of semi-infinite constraints. fseminf

options An structure that defines options used by the optimization 
functions. For information about the options, see 
“Optimization Options” on page 5-9 or the individual 
function reference pages.

All functions

seminfcon The function that computes the nonlinear inequality and 
equality constraints and the semi-infinite constraints. 
seminfcon is the name of an M-file or MEX-file. “Avoiding 
Global Variables via Anonymous and Nested Functions” 
on page 2-19 explains how to parameterize seminfcon, if 
necessary.

See the function reference pages for fseminf for more 
information on seminfcon.

fseminf

Argument Description Used by Functions



Function Arguments
Output Arguments

weight A weighting vector to control the relative 
underattainment or overattainment of the objectives.

fgoalattain

xdata, 
ydata

The input data xdata and the observed output data ydata 
that are to be fitted to an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or matrix).

(For fzero, x0 can also be a two-element vector 
representing an interval that is known to contain a zero.)

All functions except 
fminbnd

x1, x2 The interval over which the function is minimized. fminbnd

Argument Description Used by Functions

Argument Description Used by Functions

attainfactor The attainment factor at the solution x. fgoalattain

exitflag An integer identifying the reason the optimization 
algorithm terminated. You can use exitflag as a 
programming tool when writing M-files that perform 
optimizations. See the reference pages for the 
optimization functions for descriptions of exitflag 
specific to each function.

You can also return a message stating why an 
optimization terminated by calling the optimization 
function with the output argument output and then 
displaying output.message.

All functions

fval The value of the objective function fun at the 
solution x.

fgoalattain, 
fminbnd, fmincon, 
fminimax, 
fminsearch, fminunc, 
fseminf, fsolve, 
fzero, linprog, 
quadprog
5-7
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grad The value of the gradient of fun at the solution x. If 
fun does not compute the gradient, grad is a 
finite-differencing approximation of the gradient. 

fmincon, fminunc

hessian The value of the Hessian of fun at the solution x. For 
large-scale methods, if fun does not compute the 
Hessian, hessian is a finite-differencing 
approximation of the Hessian. For medium-scale 
methods, hessian is the value of the Quasi-Newton 
approximation to the Hessian at the solution x. 

fmincon, fminunc

jacobian The value of the Jacobian of fun at the solution x. If 
fun does not compute the Jacobian, jacobian is a 
finite-differencing approximation of the Jacobian. 

lsqcurvefit, 
lsqnonlin, fsolve

lambda The Lagrange multipliers at the solution x. lambda is 
a structure where each field is for a different 
constraint type. For structure field names, see 
individual function descriptions. (For lsqnonneg, 
lambda is simply a vector, as lsqnonneg only handles 
one kind of constraint.)

fgoalattain, 
fmincon, fminimax, 
fseminf, linprog, 
lsqcurvefit, lsqlin, 
lsqnonlin, 
lsqnonneg, quadprog

maxfval max{fun(x)} at the solution x. fminimax

output An output structure that contains information about 
the results of the optimization. For structure field 
names, see individual function descriptions.

All functions

residual The value of the residual at the solution x. lsqcurvefit, lsqlin, 
lsqnonlin, lsqnonneg

resnorm The value of the squared 2-norm of the residual at 
the solution x.

lsqcurvefit, lsqlin, 
lsqnonlin, lsqnonneg

x The solution found by the optimization function. If 
exitflag > 0, then x is a solution; otherwise, x is 
the value of the optimization routine when it 
terminated prematurely.

All functions

Argument Description Used by Functions



Optimization Options
Optimization Options
The following table describes fields in the optimization options structure 
options. You can set values of these fields using the function optimset. The 
column labeled L, M, B indicates whether the option applies to large-scale 
methods, medium scale methods, or both:

• L – Large-scale methods only

• M – Medium-scale methods only

• B – Both large- and medium-scale methods

See the optimset reference page and the individual function reference pages 
for information about option values and defaults.

The default values for the options vary depending on which optimization 
function you call with options as an input argument. You can determine 
determine the default option values for any of the optimization functions by 
entering optimset followed by the name of the function. For example,

optimset fmincon

returns a list of the options and the default values for fmincon. Options whose 
default values listed as [] are not used by the function.

Option Name Description L, M, B Used by Functions

BranchStrategy Strategy bintprog uses to 
select branch variable

M bintprog

DerivativeCheck Compare user-supplied 
analytic derivatives (gradients 
or Jacobian) to finite 
differencing derivatives.

B fgoalattain, fmincon, 
fminimax, fminunc, 
fseminf, fsolve, 
lsqcurvefit, lsqnonlin

Diagnostics Display diagnostic information 
about the function to be 
minimized or solved.

B All but fminbnd, 
fminsearch, fzero, and 
lsqnonneg
5-9
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DiffMaxChange Maximum change in variables 
for finite-difference 
derivatives.

M fgoalattain, fmincon, 
fminimax, fminunc, 
fseminf, fsolve, 
lsqcurvefit, lsqnonlin

DiffMinChange Minimum change in variables 
for finite-difference 
derivatives.

M fgoalattain, fmincon, 
fminimax, fminunc, 
fseminf, fsolve, 
lsqcurvefit, lsqnonlin

Display Level of display. 'off' displays 
no output; 'iter' displays 
output at each iteration; 
'final' displays just the final 
output; 'notify' displays 
output only if function does not 
converge.

B All. See the individual 
function reference pages 
for the values that apply.

FunValCheck Check whether objective 
function values are valid. 'on' 
displays a warning when the 
objective function returns a 
value that is complex or NaN. 
'off' displays no warning.

B All

GoalsExactAchieve Specifies the number of 
objectives for which it is 
required for the objective fun 
to equal the goal goal. Such 
objectives should be 
partitioned into the first few 
elements of F. 

M fgoalattain

GradConstr Gradients for the nonlinear 
constraints defined by the user.

M fgoalattain, fmincon, 
fminimax

Option Name Description L, M, B Used by Functions
0



Optimization Options
GradObj Gradients for the objective 
functions defined by the user.

B fgoalattain, fmincon, 
fminimax, fminunc, 
fseminf

Hessian If 'on', function uses 
user-defined Hessian or 
Hessian information (when 
using HessMult), for the 
objective function. If 'off', 
function approximates the 
Hessian using finite 
differences.

L fmincon, fminunc

HessMult Hessian multiply function 
defined by the user. “Avoiding 
Global Variables via 
Anonymous and Nested 
Functions” on page 2-19 
explains how to parameterize 
the Hessian multiply function, 
if necessary.

L fmincon, fminunc, 
quadprog

HessPattern Sparsity pattern of the Hessian 
for finite differencing. The size 
of the matrix is n-by-n, where n 
is the number of elements in 
x0, the starting point.

L fmincon, fminunc

HessUpdate Quasi-Newton updating 
scheme.

M fminunc

InitialHessMatrix Initial quasi-Newton matrix M fminunc

InitialHessType Initial quasi-Newton matrix 
type

M fminunc

Option Name Description L, M, B Used by Functions
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Jacobian If 'on', function uses 
user-defined Jacobian or 
Jacobian information (when 
using JacobMult), for the 
objective function. If 'off', 
function approximates the 
Jacobian using finite 
differences.

B fsolve, lsqcurvefit, 
lsqnonlin

JacobMult Jacobian multiply function 
defined by the user. “Avoiding 
Global Variables via 
Anonymous and Nested 
Functions” on page 2-19 
explains how to parameterize 
the Jacobian multiply function, 
if necessary.

L fsolve, lsqcurvefit, 
lsqlin, lsqnonlin

JacobPattern Sparsity pattern of the 
Jacobian for finite differencing. 
The size of the matrix is 
m-by-n, where m is the number 
of values in the first argument 
returned by the user-specified 
function fun, and n is the 
number of elements in x0, the 
starting point.

L fsolve, lsqcurvefit, 
lsqnonlin

LargeScale Use large-scale algorithm if 
possible.

B fmincon, fminunc, fsolve, 
linprog, lsqcurvefit, 
lsqlin, lsqnonlin, 
quadprog

LevenbergMarquardt Choose Levenberg-Marquardt 
over Gauss-Newton algorithm.

M lsqcurvefit, lsqnonlin

LineSearchType Line search algorithm choice M fsolve, lsqcurvefit, 
lsqnonlin

Option Name Description L, M, B Used by Functions
2



Optimization Options
MaxFunEvals Maximum number of function 
evaluations allowed

B fgoalattain, fminbnd, 
fmincon, fminimax, 
fminsearch, fminunc, 
fseminf, fsolve, 
lsqcurvefit, lsqnonlin

MaxIter Maximum number of iterations 
allowed

B All but fzero and 
lsqnonneg

MaxNodes Maximum number of possible 
solutions, or nodes, the binary 
integer programming function 
bintprog searches

M bintprog

MaxPCGIter Maximum number of iterations 
of preconditioned conjugate 
gradients method allowed

L fmincon, fminunc, fsolve, 
lsqcurvefit, lsqlin, 
lsqnonlin, quadprog

MaxRLPIter Maximum number of iterations 
of linear programming 
relaxation method allowed

M bintprog

MaxSQPIter Maximum number of iterations 
of sequential quadratic 
programming method allowed

M fmincon

MaxTime Maximum amount of time in 
seconds allowed for the 
algorithm

M bintprog

MeritFunction Use goal attainment/minimax 
merit function (multiobjective) 
vs. fmincon (single objective).

M fgoalattain, fminimax

MinAbsMax Number of F(x) to minimize the 
worst case absolute values

M fminimax

NodeDisplayInterval Node display interval for 
bintprog

M bintprog

Option Name Description L, M, B Used by Functions
5-13



5 Function Reference

5-1
NodeSearchStrategy Search strategy that bintprog 
uses

M bintprog

NonlEqnAlgorithm Choose Levenberg-Marquardt 
or Gauss-Newton over the 
trust-region dogleg algorithm.

M fsolve

OutputFcn Specify a user-defined function 
that the optimization function 
calls at each iteration. See 
“Output Function” on 
page 5-15.

B fgoalattain, fmincon, 
fminimax, fminunc, 
fseminf, lsqcurvefit, 
lsqnonlin

PrecondBandWidth Upper bandwidth of 
preconditioner for PCG.

L fmincon, fminunc, fsolve, 
lsqcurvefit, lsqlin, 
lsqnonlin, quadprog

Simplex If 'on', function uses the 
simplex algorithm.

M linprog

TolCon Termination tolerance on the 
constraint violation.

B bintprog, fgoalattain, 
fmincon, fminimax, 
fseminf

TolFun Termination tolerance on the 
function value.

B bintprog, fgoalattain, 
fmincon, fminimax, 
fminsearch, fminunc, 
fseminf, fsolve, 
linprog (large-scale only), 
lsqcurvefit, 
lsqlin (large-scale only), 
lsqnonlin, 
quadprog (large-scale only)

TolPCG Termination tolerance on the 
PCG iteration.

L fmincon, fminunc, fsolve, 
lsqcurvefit, lsqlin, 
lsqnonlin, quadprog

Option Name Description L, M, B Used by Functions
4
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Output Function
The Outputfcn field of the options structure specifies a function that an 
optimization function calls at each iteration. Typically, you might use an 
output function to plot points at each iteration or to display data from the 
algorithm. To set up an output function, do the following:

1 Write the output function as an M-file function or subfunction.

2 Use optimset to set the value of Outputfcn to be a function handle, that is, 
the name of the function preceded by the @ sign. For example, if the output 
function is outfun.m, the command

 options = optimset('OutputFcn', @outfun);

sets the value of OutputFcn to be the handle to outfun.

3 Call the optimization function with options as an input argument.

See “Calling an Output Function Iteratively” on page 2-85 for an example of an 
output function.

TolRLPFun Termination tolerance on the 
function value of a linear 
programming relaxation 
problem

M bintprog

TolX Termination tolerance on x. B All functions except the 
medium-scale algorithms 
for linprog, lsqlin, and 
quadprog

TolXInteger Tolerance within which 
bintprog considers the value 
of a variable to be an integer

M bintprog

TypicalX Typical x values. The length of 
the vector is equal to the 
number of elements in x0, the 
starting point.

B fmincon, fminunc, fsolve, 
lsqcurvefit, lsqlin, 
lsqnonlin, quadprog

Option Name Description L, M, B Used by Functions
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“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the output function OutputFcn, if 
necessary.

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration. 
“Fields in optimValues” on page 5-16 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on 
page 5-23 lists the possible values.

• stop is a flag that is true or false depending on whether the optimization 
routine should quit or continue. See “Stop Flag” on page 5-23 for more 
information.

The optimization function passes the values of the input arguments to outfun 
at each iteration.

Fields in optimValues
The following table lists the fields of the optimValues structure. A particular 
optimization function returns values for only some of these fields. For each 
field, the Returned by Functions column of the table lists the functions that 
return the field. 

Corresponding Output Arguments. Some of the fields of optimValues correspond to 
output arguments of the optimization function. After the final iteration of the 
optimization algorithm, the value of such a field equals the corresponding 
output argument. For example, optimValues.fval corresponds to the output 
argument fval. So, if you call fmincon with an output function and return 
fval, the final value of optimValues.fval equals fval. The Description 
column of the following table indicates the fields that have a corresponding 
output argument.
6
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Command-Line Display. The values of some fields of optimValues are displayed at 
the command line when you call the optimization function with the Display 
field of options set to 'iter', as described in “Displaying Iterative Output” on 
page 2-79. For example, optimValues.fval is displayed in the f(x) column. 
The Command-Line Display column of the following table indicates the fields 
that you can display at the command line.

In the following table, the letters L, M, and B mean the following:

• L — Function returns a value to the field when using large-scale algorithm.

• M — Function returns a value to the field when using medium-scale 
algorithm.

• B — Function returns a value to the field when using both large and 
medium-scale algorithms.

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display

cgiterations Number of conjugate 
gradient iterations at 
current iteration. Final 
value equals 
optimization function 
output 
output.cgiterations.

fmincon (L), 
lsqcurvefit (L), 
lsqnonlin (L)

CG-iterations

See “Displaying 
Iterative Output” 
on page 2-79.

constrviolation Maximum constraint 
violation

fgoalattain (M), 
fmincon (M), 
fminimax (M), 
fseminf (M)

max constraint

See “Displaying 
Iterative Output” 
on page 2-79.
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degenerate Measure of degeneracy. 
A point is degenerate if 

• The partial derivative 
with respect to one of 
the variables is 0 at 
the point. 

• A bound constraint is 
active for that 
variable at the point.

See “Degeneracy” on 
page 5-22.

fmincon (L), 
lsqcurvefit (L), 
lsqnonlin (L)

None

directionalderivative Directional derivative 
in the search direction

fgoalattain (M), 
fmincon (M), 
fminimax (M), 
fminunc (M), 
fseminf (M), 
lsqcurvefit (M), 
lsqnonlin (M)

Directional 
derivative

See “Displaying 
Iterative Output” 
on page 2-79.

firstorderopt First-order optimality 
(depends on algorithm). 
Final value equals 
optimization function 
output 
output.firstorderopt.

fgoalattain (M), 
fmincon (B), 
fminimax (M), 
fminunc (M), 
fseminf (M), 
lsqcurvefit (B), 
lsqnonlin (B)

First-order 
optimality

See “Displaying 
Iterative Output” 
on page 2-79.

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display
8
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funcount Cumulative number of 
function evaluations. 
Final value equals 
optimization function 
output 
output.funcCount.

fgoalattain (M), 
fminbnd (B), 
fmincon (B), 
fminimax (M), 
fminsearch (B), 
fminunc (B),
fzero (B), 
fseminf (M), 
lsqcurvefit (B), 
lsqnonlin (B)

F-count

See “Displaying 
Iterative Output” 
on page 2-79.

fval Function value at 
current point. Final 
value equals 
optimization function 
output fval.

fgoalattain (M), 
fminbnd (B), 
fmincon (B), 
fminimax (M), 
fminsearch (B), 
fminunc (B), 
fseminf (M), 
fzero (B), 
lsqcurvefit (B), 
lsqnonlin (B)

f(x)

See “Displaying 
Iterative Output” 
on page 2-79.

gradient Current gradient of 
objective function — 
either analytic gradient 
if you provide it or 
finite-differencing 
approximation. Final 
value equals 
optimization function 
output grad.

fgoalattain (M), 
fmincon (B), 
fminimax (M), 
fminunc (M), 
fseminf (M), 
lsqcurvefit (B), 
lsqnonlin (B)

None

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display
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iteration Iteration number — 
starts at 0. Final value 
equals optimization 
function output 
output.iterations.

fgoalattain (M), 
fminbnd (B), 
fmincon (B), 
fminimax (M), 
fminsearch (B), 
fminunc (B), 
fseminf (M), 
fzero (B), 
lsqcurvefit (B), 
lsqnonlin (B)

Iteration

See “Displaying 
Iterative Output” 
on page 2-79.

lambda The Lagrange 
multipliers at the 
solution x. lambda is a 
structure where each 
field is for a different 
constraint type. For 
structure field names, 
see individual function 
descriptions. Final 
value equals 
optimization function 
output lambda.

fgoalattain (M), 
fmincon (M), 
fminimax (M), 
fseminf (M), 
lsqcurvefit (M), 
lsqnonlin (M)

None

positivedefinite • 0 if algorithm detects 
negative curvature 
while computing 
Newton step

• 1 otherwise

fmincon (L), 
lsqcurvefit (L), 
lsqnonlin (L)

None

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display
0
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procedure Procedure messages fgoalattain (M), 
fminbnd (B), 
fmincon (M), 
fminimax (M), 
fminsearch (B), 
fseminf (M), 
fzero (B),

Procedure

See “Displaying 
Iterative Output” 
on page 2-79.

ratio Ratio of change in the 
objective function to 
change in the quadratic 
approximation

fmincon (L), 
lsqcurvefit (L), 
lsqnonlin (L)

None

residual 2-norm of the residual 
squared. Final value 
equals optimization 
function output 
residual.

lsqcurvefit (B), 
lsqnonlin (B)

Residual

See “Displaying 
Iterative Output” 
on page 2-79.

searchdirection Search direction fgoalattain (M), 
fmincon (M), 
fminimax (M), 
fminunc (M), 
fseminf (M), 
lsqcurvefit (M), 
lsqnonlin (M)

None

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display
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Degeneracy. The value of the field degenerate, which measures the degeneracy 
of the current optimization point x, is defined as follows. First, define a vector 
r, of the same size as x, for which r(i) is the minimum distance from x(i) to 
the ith entries of the lower and upper bounds, lb and ub. That is,

r = min(abs(ub-x, x-lb))

Then the value of degenerate is the minimum entry of the vector 
r + abs(grad), where grad is the gradient of the objective function. The value 
of degenerate is 0 if there is an index i for which both of the following are true:

• grad(i) = 0

• x(i) equals the ith entry of either the lower or upper bound.

stepsize Current step size. Final 
value equals 
optimization function 
output 
options.stepsize.

fgoalattain (M), 
fmincon (B), 
fminimax (M), 
fminunc (B), 
fseminf (M), 
lsqcurvefit (B), 
lsqnonlin (B)

Step-size

See “Displaying 
Iterative Output” 
on page 2-79.

trustregionradius Radius of trust region fmincon (L), 
lsqcurvefit, 
lsqnonlin (L)

Trust-region 
radius

See “Displaying 
Iterative Output” 
on page 2-79.

OptimValues Field  
(optimValues.field)

Description Returned by 
Functions

Command-Line 
Display
2
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States of the Algorithm
The following table lists the possible values for state:

The following code illustrates how the output function might use the value of 
state to decide which tasks to perform at the current iteration. 

switch state
    case 'iter'
          % Make updates to plot or guis as needed
    case 'interrupt'
          % Probably no action here. Check conditions to see 

% whether optimization should quit.
    case 'init'
          % Setup for plots or guis
    case 'done'
          % Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the 
optimization function whether the optimization should quit or continue. The 
following examples show typical ways to use the stop flag. 

State Description

'init' The algorithm is in the initial state before the first 
iteration.

'interrupt' The algorithm is in some computationally expensive part of 
the iteration. In this state, the output function can 
interrupt the current iteration of the optimization. At this 
time, the values of x and optimValues are the same as at 
the last call to the output function in which state=='iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.
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Stopping an Optimization Based on Data in optimValues. The output function can stop 
an optimization at any iteration based on the current data in optimValues. For 
example, the following code sets stop to true if the directional derivative is less 
than.01:

function stop = outfun(x, optimValues)
stop = false;
% Check if directional derivative is less than .01.
if optimValues.directionalderivative < .01

stop = true;
end 

Stopping an Optimization Based on GUI Input. If you design a GUI to perform 
optimizations, you can make the output function stop an optimization when a 
user presses a Stop button on the GUI. The following code shows how to do 
this, assuming that the Stop button callback stores the value true in the 
optimstop field of a handles structure called hObject.

function stop = outfun(x)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');
4
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bintprog
5bintprogPurpose Solve binary integer programming problems of the form

where f, b, and beq are vectors, A and Aeq are matrices, and the solution x is 
required to be a binary integer vector — that is, its entries can only take on the 
values 0 or 1.

Syntax x = bintprog(f)
x = bintprog(f, A, b)
x = bintprog(f, A, b, Aeq, beq)
x = bintprog(f, A, b, Aeq, beq, x0)
x = bintprog(f, A, b, Aeq, beq, x0, options)
[x, fval] = bintprog(...)
[x,fval, exitflag] = bintprog(...)
[x, fval, exitflag, output] = bintprog(...)

Description x = bintprog(f) solves the binary integer programming problem

 

x = bintprog(f, A, b) solves the binary integer programming problem

 

x = bintprog(f, A, b, Aeq, beq) solves the preceding problem with the 
additional equality constraint.

 

x = bintprog(f, A, b, Aeq, beq, x0) sets the starting point for the 
algorithm to x0. If x0 is not in the feasible region, bintprog uses the default 
initial point.

x = bintprog(f, A, b, Aeq, Beq, x0, options) minimizes with the default 
optimization options replaced by values in the structure options, which you 
can create using the function optimset.

minimize
x

f′ x⋅ such that A x⋅ b≤
Aeq x⋅ beq=

minimize
x

f′ x⋅

minimize
x

f′ x⋅  such that A x⋅ b≤

Aeq x⋅ beq=
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[x, fval] = bintprog(...) returns fval, the value of the objective function 
at x.

[x,fval, exitflag] = bintprog(...) returns exitflag that describes the 
exit condition of bintprog. See “Output Arguments” on page 5-27.

[x, fval, exitflag, output] = bintprog(...) returns a structure output 
that contains information about the optimization. See “Output Arguments” on 
page 5-27.

Input 
Arguments

The following table lists the input arguments for bintprog. “Function 
Arguments” on page 5-5 contains general descriptions of input arguments for 
optimization functions. 

Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by bintprog. This section provides specific details for the arguments 
exitflag and output:

f Vector containing the coefficients of the linear objective function

A Matrix containing the coefficients of the linear inequality 
constraints 

b Vector corresponding to the right-hand side of the linear 
inequality constraints 

Aeq Matrix containing the coefficients of the linear equality 
constraints 

beq Vector containing the constants of the linear equality constraints

x0 Initial point for the algorithm

options Options structure containing options for the algorithm. 

A x⋅ b≤

Aeq x⋅ beq=

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded 
options.MaxIter.
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Options Optimization options used by bintprog. You can use optimset to set or change 
the values of these fields in the options structure options. See “Optimization 
Options” on page 5-9, for detailed information. 

-2 The problem is infeasible.

-4 Number of searched nodes exceeded 
options.MaxNodes.

-5 Search time exceeded options.MaxTime. 

-6 Number of iterations the LP-solver performed at 
a node to solve the LP-relaxation problem  
exceeded options.MaxRLP.

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

nodes Number of nodes searched

time Execution time of the algorithm

algorithm Algorithm used

message Reason the algorithm terminated 

BranchStrategy Strategy the algorithm uses to select the branch 
variable in the search tree — see “Branching” on 
page 5-30. The choices are

- 'mininfeas' — Choose the variable with the 
minimum integer infeasibility, that is, the variable 
whose value is closest to 0 or 1 but not equal to 0 or 
1.

- 'maxinfeas' — Choose the variable with the 
maximum integer infeasibility, that is, the variable 
whose value is closest to 0.5 (default).

The infeasibility

Diagnostics Display diagnostic information about the function
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Algorithm bintprog uses a linear programming (LP)-based branch-and-bound algorithm 
to solve binary integer programming problems. The algorithm searches for an 
optimal solution to the binary integer programming problem by solving a series 

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

DispNodeInterval Node display interval

MaxIter Maximum number of iterations allowed

MaxNodes Maximum number of solutions, or nodes, the function 
searches

MaxRLPIter Maximum number of iterations the LP-solver performs 
to solve the LP-relaxation problem at each node

MaxTime Maximum amount of time in seconds the function runs

NodeSearchStrategy Strategy the algorithm uses to select the next node to 
search in the search tree — see “Branching” on 
page 5-30. The choices are

- 'df' — Depth first search strategy. At each node in 
the search tree, if there is child node one level  
down in the tree that has not already been 
explored, the algorithm chooses one such child to 
search. Otherwise, the algorithm moves to the node 
one level up in the tree and chooses a child node 
one level down from that node. 

- 'bn' — Best node search strategy, which chooses 
the node with lowest bound on the objective 
function. 

TolCon Termination tolerance on the constraint violation

TolFun Termination tolerance on the function value

TolXInteger Tolerance within which the value of a variable is 
considered to be integral

TolRLPFun Termination tolerance on the function value of a linear 
programming relaxation problem
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of LP-relaxation problems, in which the binary integer requirement on the 
variables is replaced by the weaker constraint . The algorithm

• Searches for a binary integer feasible solution

• Updates the best binary integer feasible point found so far as the search tree 
grows

• Verifies that no better integer feasible solution is possible by solving a series 
of linear programming problems

The following sections describe the branch-and-bound method in greater detail.

Branching
The algorithm creates a search tree by repeatedly adding constraints to the 
problem, that is, “branching.” At a branching step, the algorithm chooses a 
variable xj whose current value is not an integer and adds the constraint xj = 0 
to form one branch and the constraint xj = 1 to form the other branch. This 
process can be represented by a binary tree, in which the nodes represent the 
added constraints. The following picture illustrates a complete binary tree for 
a problem that has three variables, x1, x2, and x3. Note that, in general, the 
order of the variables going down the levels in the tree is not the usual order of 
their subscripts

Deciding Whether to Branch
At each node, the algorithm solves an LP-relaxation problem using the 
constraints at that node and decides whether to branch or to move to another 
node depending on the outcome. There are three possibilities: 

• If the LP-relaxation problem at the current node is infeasible or its optimal 
value is greater than that of the best integer point, the algorithm removes 

0 x 1≤ ≤

x3= 1

x1 = 

0

0 0

0 0 0 0

1 1

1 1 1 1x2= 
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the node from the tree, after which it does not search any branches below 
that node. The algorithm then moves to a new node according to the method 
you specify in NodeSearchStrategy option. 

• If the algorithm finds a new feasible integer point with lower objective value 
than that of the best integer point, it updates the current best integer point 
and moves to the next node. 

• If the LP-relaxation problem is optimal but not integer and the optimal 
objective value of the LP relaxation problem is less than the best integer 
point, the algorithm branches according to the method you specify in the 
BranchStrategy option.

See “Options” on page 5-28 for a description of the NodeSearchStrategy and 
BranchStrategy options.

Bounds
The solution to the LP-relaxation problem provides a lower bound for the 
binary integer programming problem. If the solution to the LP-relaxation 
problem is already a binary integer vector, it provides an upper bound for the 
binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower and 
upper bounds on the objective function, using the bounds obtained in the 
bounding step. The bound on the objective value serves as the threshold to cut 
off unnecessary branches. 

Limits for the Algorithm
The algorithm for bintprog could potentially search all 2n binary integer 
vectors, where n is the number of variables. As a complete search might take a 
very long time, you can limit the search using the following options

• MaxNodes — Maximum number of nodes the algorithm searches

• MaxRLPIter — Maximum number of iterations the LP-solver performs at any 
node

• MaxTime — Maximum amount of time in seconds the algorithm runs 

See “Options” on page 5-28 for more information.
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Example To minimize the function

 

subject to the constraints

where x1, x2, x3, and x4 are binary integers, enter the following commands:

f = [-9; -5; -6; -4]; 
A = [6 3 5 2; 0 0 1 1; -1 0 1 0; 0 -1 0 1];
b = [9; 1; 0; 0];
x = bintprog(f,A,b) 
Optimization terminated successfully.

x =

     1
     1
     0
     0

See Also optimset

References [1] Wolsey, Laurence A., Integer Programming, John Wiley & Sons, 1998. 

[2] Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial 
Optimization,  John Wiley & Sons, 1988.

[3] Hillier, Frederick S. and Lieberman Gerald J.,  Introduction to Operations 
Research, McGraw-Hill, 2001.

f x( ) 9– x1 5x2 6x3 4x4–––=

6 3 5 2
0 0 1 1
1– 0 1 0
0 1– 0 1

x1

x2

x3

x4

9
1
0
0

≤
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5fgoalattainPurpose Solve multiobjective goal attainment problem 

where x, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices, 
and c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x) 
can be nonlinear functions.

Syntax x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...

lb,ub,nonlcon,options)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)

Description fgoalattain solves the goal attainment problem, which is one formulation for 
minimizing a multiobjective optimization problem.

x = fgoalattain(fun,x0,goal,weight) tries to make the objective functions 
supplied by fun attain the goals specified by goal by varying x, starting at x0, 
with weight specified by weight.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal attainment 
problem subject to the linear inequalities A*x <= b.

γ
x,γ

minimize  such that F x( ) weight γ⋅– goal≤

c x( ) 0≤

ceq x( ) 0=
A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal 
attainment problem subject to the linear equalities Aeq*x = beq as well. Set 
A=[] and b=[] if no inequalities exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines a set of 
lower and upper bounds on the design variables in x, so that the solution is 
always in the range lb <= x <= ub.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
subjects the goal attainment problem to the nonlinear inequalities c(x) or 
nonlinear equality constraints ceq(x) defined in nonlcon. fgoalattain 
optimizes such that c(x) <= 0 and ceq(x) = 0. Set lb=[] and/or ub=[] if no 
bounds exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,... 
options) minimizes with the optimization options specified in the structure 
options. Use optimset to set these options. 

[x,fval] = fgoalattain(...) returns the values of the objective functions 
computed in fun at the solution x.

[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor 
at the solution x.

[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value 
exitflag that describes the exit condition of fgoalattain.

[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a 
structure output that contains information about the optimization.

[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)
returns a structure lambda whose fields contain the Lagrange multipliers at 
the solution x.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.
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Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fgoalattain. This section provides function-specific details for 
fun, goal, nonlcon, options, and weight:

fun The function to be minimized. fun is a function that accepts a 
vector x and returns a vector F, the objective functions evaluated 
at x. The function fun can be specified as a function handle for an 
M-file function

x = fgoalattain(@myfun,x0,goal,weight)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ...         % Compute function values at x.

fun can also be a function handle for an anonymous function.

x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);

To make an objective function as near as possible to a goal value, 
(i.e., neither greater than nor less than) use optimset to set the 
GoalsExactAchieve option to the number of objectives required to 
be in the neighborhood of the goal values. Such objectives must be 
partitioned into the first elements of the vector F returned by fun.

If the gradient of the objective function can also be computed and 
the GradObj option is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, 
the gradient value G, a matrix, at x. Note that by checking the 
value of nargout the function can avoid computing G when fun is 
called with only one output argument (in the case where the 
optimization algorithm only needs the value of F but not G).

function [F,G] = myfun(x)
F = ... % Compute the function values at x
if nargout > 1 % Two output arguments

G = ... % Gradients evaluated at x
end
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The gradient consists of the partial derivative dF/dx of each F at 
the point x. If F is a vector of length m and x has length n, where n 
is the length of x0, then the gradient G of F(x) is an n-by-m matrix 
where G(i,j) is the partial derivative of F(j) with respect to x(i) 
(i.e., the jth column of G is the gradient of the jth objective 
function F(j)).

goal Vector of values that the objectives attempt to attain. The vector is 
the same length as the number of objectives F returned by fun. 
fgoalattain attempts to minimize the values in the vector F to 
attain the goal values given by goal.

nonlcon The function that computes the nonlinear inequality constraints 
c(x) <= 0 and the nonlinear equality constraints ceq(x) = 0. The 
function nonlcon accepts a vector x and returns two vectors c and 
ceq. The vector c contains the nonlinear inequalities evaluated at 
x, and ceq contains the nonlinear equalities evaluated at x. The 
function nonlcon can be specified as a function handle.

x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,...
                lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ...         % compute nonlinear inequalities at x.
ceq = ...       % compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the  
GradConstr option is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and 
fourth output arguments, GC, the gradient of c(x), and GCeq, the 
gradient of ceq(x). Note that by checking the value of nargout the 
function can avoid computing GC and GCeq when nonlcon is called 
with only two output arguments (in the case where the 
optimization algorithm only needs the values of c and ceq but not 
GC and GCeq).
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function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % Nonlcon called with 4 outputs

GC = ... % Gradients of the inequalities
GCeq = ... % Gradients of the equalities

end

If nonlcon returns a vector c of m components and x has length n, 
where n is the length of x0, then the gradient GC of c(x) is an 
n-by-m matrix, where GC(i,j) is the partial derivative of c(j) with 
respect to x(i) (i.e., the jth column of GC is the gradient of the jth 
inequality constraint c(j)). Likewise, if ceq has p components, the 
gradient GCeq of ceq(x) is an n-by-p matrix, where GCeq(i,j) is 
the partial derivative of ceq(j) with respect to x(i) (i.e., the jth 
column of GCeq is the gradient of the jth equality constraint 
ceq(j)).

“Avoiding Global Variables via Anonymous and Nested Functions” 
on page 2-19 explains how to parameterize the nonlinear 
constraint function nonlcon, if necessary.

options “Options” on page 5-39 provides the function-specific details for 
the options values.

weight A weighting vector to control the relative under-attainment or 
overattainment of the objectives in fgoalattain. When the values 
of goal are all nonzero, to ensure the same percentage of under- or 
overattainment of the active objectives, set the weighting function 
to abs(goal). (The active objectives are the set of objectives that 
are barriers to further improvement of the goals at the solution.)

Note  Setting weight=abs(goal) when any of the goal values is 
zero causes that goal constraint to be treated like a hard 
constraint rather than as a goal constraint.
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fgoalattain. This section provides function-specific details for 
attainfactor, exitflag, lambda, and output:

When the weighting function weight is positive, fgoalattain 
attempts to make the objectives less than the goal values. To make 
the objective functions greater than the goal values, set weight to 
be negative rather than positive. To make an objective function as 
near as possible to a goal value, use the GoalsExactAchieve 
option and put that objective as the first element of the vector 
returned by fun (see the preceding description of fun and 
options).

attainfactor The amount of over- or underachievement of the goals. If 
attainfactor is negative, the goals have been overachieved; 
if attainfactor is positive, the goals have been 
underachieved.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons 
the algorithm terminated.

1 Function converged to a solutions x.

4 Magnitude of the search direction less than the 
specified tolerance and constraint violation 
less than options.TolCon

5 Magnitude of directional derivative less than 
the specified tolerance and constraint violation 
less than options.TolCon

0 Number of iterations exceeded 
options.MaxIter or number of function 
evaluations exceeded options.FunEvals

-1 Algorithm was terminated by the output 
function.

-2 No feasible point was found.
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Options Optimization options used by fgoalattain. You can use optimset to set or 
change the values of these fields in the options structure options. See 
“Optimization Options” on page 5-9, for detailed information. 

lambda Structure containing the Lagrange multipliers at the solution 
x (separated by constraint type). The fields of the structure 
are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used

DerivativeCheck Compare user-supplied derivatives (gradients of 
objective or constraints) to finite-differencing 
derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized or solved.

DiffMaxChange Maximum change in variables for finite-difference 
gradients.

DiffMinChange Minimum change in variables for finite-difference 
gradients.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.
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Examples Consider a linear system of differential equations.

An output feedback controller, K, is designed producing a closed loop system

The eigenvalues of the closed loop system are determined from the matrices A, 
B, C, and K using the command eig(A+B*K*C). Closed loop eigenvalues must lie 
on the real axis in the complex plane to the left of the points [-5,-3,-1]. In 

GoalsExactAchieve Specifies the number of objectives for which it is 
required for the objective fun to equal the goal goal. 
Such objectives should be partitioned into the first few 
elements of F. 

GradConstr Gradient for the constraints defined by the user. See 
the preceding description of nonlcon to see how to 
define the gradient in nonlcon.

GradObj Gradient for the objective function defined by user. See 
the preceding description of fun to see how to define 
the gradient in fun. You must provide the gradient to 
use the large-scale method. It is optional for the 
medium-scale method.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

MeritFunction Use goal attainment/minimax merit function if set to 
'multiobj'. Use fmincon merit function if set to 
'singleobj'.

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolCon Termination tolerance on the constraint violation.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

x· A BKC+( )x Bu+=
y Cx=
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order not to saturate the inputs, no element in K can be greater than 4 or be less 
than -4.

The system is a two-input, two-output, open loop, unstable system, with 
state-space matrices.

The set of goal values for the closed loop eigenvalues is initialized as

 goal = [-5,-3,-1];

To ensure the same percentage of under- or overattainment in the active 
objectives at the solution, the weighting matrix, weight, is set to abs(goal).

Starting with a controller, K = [-1,-1; -1,-1], first write an M-file, eigfun.m.

function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives

Next, enter system matrices and invoke an optimization routine.

A = [-0.5 0 0; 0 -2 10; 0 1 -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1]; 
K0 = [-1 -1; -1 -1]; % Initialize controller matrix
goal = [-5 -3 -1]; % Set goal values for the eigenvalues
weight = abs(goal) % Set weight for same percentage
lb = -4*ones(size(K0)); % Set lower bounds on the controller
ub = 4*ones(size(K0)); % Set upper bounds on the controller
options = optimset('Display','iter'); % Set display parameter
[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C)... 

goal,weight,[],[],[],[],lb,ub,[],options)

You can run this example by using the demonstration script goaldemo. After 
about 12 iterations, a solution is

Active constraints:
1
2
4

A
0.5– 0 0
0 2– 10
0 1 2–

= B
1 0
2– 2
0 1

= C
1  0  0
     
0  0  1

=
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9
10

K = 
-4.0000 -0.2564
-4.0000 -4.0000

fval =
-6.9313
-4.1588
-1.4099

attainfactor = 
-0.3863

Discussion The attainment factor indicates that each of the objectives has been 
overachieved by at least 38.63% over the original design goals. The active 
constraints, in this case constraints 1 and 2, are the objectives that are barriers 
to further improvement and for which the percentage of overattainment is met 
exactly. Three of the lower bound constraints are also active.

In the preceding design, the optimizer tries to make the objectives less than the 
goals. For a worst-case problem where the objectives must be as near to the 
goals as possible, use optimset to set the GoalsExactAchieve option to the 
number of objectives for which this is required. 

Consider the preceding problem when you want all the eigenvalues to be equal 
to the goal values. A solution to this problem is found by invoking fgoalattain 
with the GoalsExactAchieve option set to 3.

options = optimset('GoalsExactAchieve',3);
[K,fval,attainfactor] = fgoalattain(...

@(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...
options)

After about seven iterations, a solution is

K = 
 -1.5954 1.2040

    -0.4201  -2.9046

fval =
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-5.0000
-3.0000
-1.0000

attainfactor = 
   1.0859e-20

In this case the optimizer has tried to match the objectives to the goals. The 
attainment factor (of 1.0859e-20) indicates that the goals have been matched 
almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex; this 
explains why the convergence is slow. Although the underlying methods 
assume the functions are continuous, the method is able to make steps toward 
the solution because the discontinuities do not occur at the solution point. 
When the objectives and goals are complex, fgoalattain tries to achieve the 
goals in a least-squares sense.

Algorithm Multiobjective optimization concerns the minimization of a set of objectives 
simultaneously. One formulation for this problem, and implemented in 
fgoalattain, is the goal attainment problem of Gembicki [3]. This entails the 
construction of a set of goal values for the objective functions. Multiobjective 
optimization is discussed fully in the “Standard Algorithms” chapter.

In this implementation, the slack variable  is used as a dummy argument to 
minimize the vector of objectives F(x) simultaneously; goal is a set of values 
that the objectives attain. Generally, prior to the optimization, it is not known 
whether the objectives will reach the goals (under attainment) or be minimized 
less than the goals (overattainment). A weighting vector, weight, controls the 
relative underattainment or overattainment of the objectives.

fgoalattain uses a sequential quadratic programming (SQP) method, which 
is described fully in the “Standard Algorithms” chapter. Modifications are 
made to the line search and Hessian. In the line search an exact merit function 
(see [1] and [4]) is used together with the merit function proposed by [5], [6]. 
The line search is terminated when either merit function shows improvement. 
A modified Hessian, which takes advantage of the special structure of the 
problem, is also used (see [1] and [[4]). A full description of the modifications 
used is found in “Goal Attainment Method” on page 3-47 in “Introduction to 
Algorithms.” Setting the MeritFunction option to 'singleobj' with

γ
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options = optimset(options,'MeritFunction','singleobj')

uses the merit function and Hessian used in fmincon.

attainfactor contains the value of  at the solution. A negative value of  
indicates overattainment in the goals.

See also “SQP Implementation” on page 3-30 for more details on the algorithm 
used and the types of procedures displayed under the Procedures heading 
when the Display option is set to 'iter'.

Limitations The objectives must be continuous. fgoalattain might give only local 
solutions.

See Also @ (function_handle), fmincon, fminimax, optimset

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New 
Algorithm for Statistical Circuit Design Based on Quasi–Newton Methods and 
Function Splitting,” IEEE Transactions on Circuits and Systems, Vol. CAS-26, 
pp 784-794, Sept. 1979.

[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System Design 
Using a Multi-Objective Optimisation Approach, Control 1985 Conference, 
Cambridge, UK, pp. 174-179.

[3] Gembicki, F.W., “Vector Optimization for Control with Performance and 
Parameter Sensitivity Indices,” Ph.D. Dissertation, Case Western Reserve 
Univ., Cleveland, OH, 1974.

[4] Grace, A.C.W., “Computer–Aided Control System Design Using 
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor, 
Gwynedd, UK, 1989.

[5] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” 
Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[6] Powell, M.J.D., “A Fast Algorithm for Nonlinear Constrained Optimization 
Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in 
Mathematics, Vol. 630, Springer Verlag, 1978.

γ γ
5-44



fminbnd
5fminbndPurpose Find a minimum of a function of one variable on a fixed interval

where x, x1, and x2 are scalars and f(x) is a function that returns a scalar.

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd attempts to find a minimum of a function of one variable within a fixed 
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the 
scalar valued function that is described in fun in the interval x1 <= x <= x2. 

x = fminbnd(fun,x1,x2,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,fval] = fminbnd(...) returns the value of the objective function 
computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes 
the exit condition of fminbnd.

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that 
contains information about the optimization.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fminbnd. This section provides function-specific details for fun and 
options:

min
x

f x( ) such that x1 x x2≤ ≤
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fminbnd. This section provides function-specific details for 
exitflag and output:

fun The function to be minimized. fun is a function that accepts a 
scalar x and returns a scalar f, the objective function evaluated at 
x. The function fun can be specified as a function handle for an 
M-file function

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ...         % Compute function value at x.

fun can also be a function handle for an anonymous function.

x = fminbnd(@(x)sin(x*x),x1,x2);

options “Options” on page 5-47 provides the function-specific details for 
the options values.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded options.MaxIter or  
number of function evaluations exceeded 
options.FunEvals

-1 Algorithm was terminated by the output function.

-2 The bounds are inconsistent.

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used
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Options Optimization options used by fminbnd. You can use optimset to set or change 
the values of these fields in the options structure options. See “Optimization 
Options” on page 5-9, for detailed information.

Examples A minimum of  occurs at

x = fminbnd(@sin,0,2*pi)
x = 

4.7124

The value of the function at the minimum is

y = sin(x)
y = 

-1.0000

To find the minimum of the function

on the interval (0,5), first write an M-file.

message Exit message

Display Level of display. 'off' displays no output; 'iter' displays 
output at each iteration; 'final' displays just the final 
output; 'notify' (default) displays output only if the function 
does not converge.

FunValCheck Check whether objective function values are valid. 'on' 
displays a warning when the objective function returns a 
value that is complex or NaN. 'off' displays no warning.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify a user-defined function that the optimization function 
calls at each iteration. See “Calling an Output Function 
Iteratively” on page 2-85.

TolX Termination tolerance on x.

sin x( )

f x( ) x 3–( )2 1–=
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function f = myfun(x)
f = (x-3).^2 - 1;

Next, call an optimization routine.

x = fminbnd(@myfun,0,5)

This generates the solution

x =
3

The value at the minimum is

y = f(x)

y =
-1

If fun is parameterized, you can use anonymous functions to capture the 
problem-dependent parameters. For example, suppose you want to minimize 
the objective function myfun defined by the following M-file function.

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly to 
fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a. 
a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures that 
value of a and calls myfun with two arguments:
x = fminbnd(@(x) myfun(x,a),0,1)

Algorithm fminbnd is an M-file. The algorithm is based on Golden Section search and 
parabolic interpolation. A Fortran program implementing the same algorithm 
is given in [1].

Limitations The function to be minimized must be continuous. fminbnd might only give 
local solutions.
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fminbnd often exhibits slow convergence when the solution is on a boundary of 
the interval. In such a case, fmincon often gives faster and more accurate 
solutions.

fminbnd only handles real variables.

See Also @ (function_handle), fminsearch, fmincon, fminunc, optimset, anonymous 
functions

References [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for 
Mathematical Computations, Prentice Hall, 1976.
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5fminconPurpose Find a minimum of a constrained nonlinear multivariable function

  subject to

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) 
are functions that return vectors, and f(x) is a function that returns a scalar. 
f(x), c(x), and ceq(x) can be nonlinear functions.

Syntax x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)

Description fmincon attempts to find a constrained minimum of a scalar function of several 
variables starting at an initial estimate. This is generally referred to as 
constrained nonlinear optimization or nonlinear programming.

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a minimum x to 
the function described in fun subject to the linear inequalities A*x <= b. x0 can 
be a scalar, vector, or matrix.

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear 
equalities Aeq*x = beq as well as A*x <= b. Set A=[] and b=[] if no 
inequalities exist.

f x( )
x

min

c x( ) 0≤
ceq x( ) 0=
A x⋅ b≤
Aeq x⋅ beq=
lb x ub≤ ≤
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x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper 
bounds on the design variables in x, so that the solution is always in the range 
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the 
minimization to the nonlinear inequalities c(x) or equalities ceq(x) defined in 
nonlcon. fmincon optimizes such that c(x) <= 0 and ceq(x) = 0. Set lb=[] 
and/or ub=[] if no bounds exist.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes 
with the optimization options specified in the structure options. Use optimset 
to set these options. Set nonlcon = [] if there are no nonlinear inequality or 
equality constraints.

[x,fval] = fmincon(...) returns the value of the objective function fun at 
the solution x.

[x,fval,exitflag] = fmincon(...) returns a value exitflag that describes 
the exit condition of fmincon.

[x,fval,exitflag,output] = fmincon(...) returns a structure output with 
information about the optimization.

[x,fval,exitflag,output,lambda] = fmincon(...) returns a structure 
lambda whose fields contain the Lagrange multipliers at the solution x.

[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns the value 
of the gradient of fun at the solution x.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...) returns 
the value of the Hessian at the solution x. See “Hessian” on page 5-57

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fmincon. This “Arguments” section provides function-specific 
details for fun, nonlcon, and options:
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fun The function to be minimized. fun is a function that accepts a 
vector x and returns a scalar f, the objective function evaluated at 
x. The function fun can be specified as a function handle for an 
M-file function

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fmincon(@(x)norm(x)^2,x0,A,b);

If the gradient of fun can also be computed and the GradObj option 
is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, 
the gradient value g, a vector, at x. Note that by checking the value 
of nargout the function can avoid computing g when fun is called 
with only one output argument (in the case where the 
optimization algorithm only needs the value of f but not g).

function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with two output arguments

g = ... % Compute the gradient evaluated at x
end

The gradient consists of the partial derivatives of f at the point x. 
That is, the ith component of g is the partial derivative of f with 
respect to the ith component of x.

If the Hessian matrix can also be computed and the Hessian 
option is 'on', i.e., options = optimset('Hessian','on'), then 
the function fun must return the Hessian value H, a symmetric 
matrix, at x in a third output argument. Note that by checking the 
value of nargout you can avoid computing H when fun is called 
with only one or two output arguments (in the case where the 
optimization algorithm only needs the values of f and g but not H).
5-52



fmincon
function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments

g = ... % Gradient of the function evaluated at x
if nargout > 2

H = ... % Hessian evaluated at x
end

end

The Hessian matrix is the second partial derivatives matrix of f at 
the point x. That is, the (i,j)th component of H is the second 
partial derivative of f with respect to xi and xj, . The 
Hessian is by definition a symmetric matrix.

∂2f ∂xi∂xj⁄
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nonlcon The function that computes the nonlinear inequality constraints 
c(x)<= 0 and the nonlinear equality constraints ceq(x) = 0. The 
function nonlcon accepts a vector x and returns two vectors c and 
ceq. The vector c contains the nonlinear inequalities evaluated at 
x, and ceq contains the nonlinear equalities evaluated at x. The 
function nonlcon can be specified as a function handle.

x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the 
GradConstr option is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and 
fourth output arguments, GC, the gradient of c(x), and GCeq, the 
gradient of ceq(x). Note that by checking the value of nargout the 
function can avoid computing GC and GCeq when nonlcon is called 
with only two output arguments (in the case where the 
optimization algorithm only needs the values of c and ceq but not 
GC and GCeq).

“Avoiding Global Variables via Anonymous and Nested Functions” 
on page 2-19 explains how to parameterize the nonlinear 
constraint function nonlcon, if necessary.
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fmincon. This section provides function-specific details for 
exitflag, lambda, and output:

function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs

GC = ... % Gradients of the inequalities
GCeq = ... % Gradients of the equalities

end

If nonlcon returns a vector c of m components and x has length n, 
where n is the length of x0, then the gradient GC of c(x) is an 
n-by-m matrix, where GC(i,j) is the partial derivative of c(j) with 
respect to x(i) (i.e., the jth column of GC is the gradient of the jth 
inequality constraint c(j)). Likewise, if ceq has p components, the 
gradient GCeq of ceq(x) is an n-by-p matrix, where GCeq(i,j) is 
the partial derivative of ceq(j) with respect to x(i) (i.e., the jth 
column of GCeq is the gradient of the jth equality constraint 
ceq(j)).

options “Options” on page 5-57 provides the function-specific details for 
the options values.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 First order optimality conditions were satisfied 
to the specified tolerance.

2 Change in x was less than the specified 
tolerance.

3 Change in the objective function value was less 
than the specified tolerance.

4 Magnitude of the search direction was less than 
the specified tolerance and constraint violation 
was less than options.TolCon.
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5 Magnitude of directional derivative was less 
than the specified tolerance and constraint 
violation  was less than options.TolCon.

0 Number of iterations exceeded options.MaxIter 
or number of function evaluations exceeded 
options.FunEvals

-1 Algorithm was terminated by the output 
function.

-2 No feasible point was found.

grad Gradient at x

hessian Hessian at x

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used.

cgiterations Number of PCG iterations (large-scale algorithm 
only)

stepsize Final step size taken (medium-scale algorithm 
only)
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Hessian
fmincon computes the output argument hessian as follows:

• When using the medium-scale algorithm, the function computes a 
quasi-Newton approximation to the Hessian of the Lagrangian at x.

• When using the large-scale algorithm, the function uses

- options.Hessian, if you supply it, to compute the Hessian at x

- A finite-difference approximation to the Hessian at x, if you supply only 
the gradient. Note that because the large-scale algorithm does not take 
nonlinear constraints, the Hessian of the Lagrangian is the same as the 
Hessian of the objective function.

Options Optimization options used by fmincon. Some options apply to all algorithms, 
some are only relevant when you are using the large-scale algorithm, and 
others are only relevant when you are using the medium-scale algorithm.You 
can use optimset to set or change the values of these fields in the options 
structure options. See “Optimization Options” on page 5-9, for detailed 
information. 

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference because certain conditions must be met to use the large-scale 
algorithm. For fmincon, you must provide the gradient (see the preceding 
description of fun to see how) or else the medium-scale algorithm is used:

firstorderopt Measure of first-order optimality (large-scale 
algorithm only)

For large-scale bound constrained problems, the 
first-order optimality is the infinity norm of 
v.*g, where v is defined as in “Box Constraints” 
on page 4-7, and g is the gradient.

For large-scale problems with only linear 
equalities, the first-order optimality is the 
infinity norm of the projected gradient (i.e. the 
gradient projected onto the nullspace of Aeq).
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Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

LargeScale Use the large-scale algorithm if possible when set to 
'on'. Use the medium-scale algorithm when set to 
'off'.

DerivativeCheck Compare user-supplied derivatives (gradients of the 
objective and constraints) to finite-differencing 
derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

GradObj Gradient for the objective function defined by the user. 
See the preceding description of fun to see how to define 
the gradient in fun. You must provide the gradient to 
use the large-scale method. It is optional for the 
medium-scale method.

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolFun Termination tolerance on the function value.

TolCon Termination tolerance on the constraint violation.

TolX Termination tolerance on x.

TypicalX Typical x values.
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Hessian If 'on', fmincon uses a user-defined Hessian (defined in 
fun), or Hessian information (when using HessMult), for 
the objective function. If 'off', fmincon approximates 
the Hessian using finite differences.

HessMult Function handle for Hessian multiply function. For 
large-scale structured problems, this function computes 
the Hessian matrix product H*Y without actually 
forming H. The function is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional parameters 
p1,p2,... contain the matrices used to compute H*Y. 

The first argument must be the same as the third 
argument returned by the objective function fun, for 
example by

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there 
are dimensions in the problem. W = H*Y although H is not 
formed explicitly. fminunc uses Hinfo to compute the 
preconditioner. The optional parameters p1, p2, ... can be 
any additional parameters needed by hmfun. See 
“Avoiding Global Variables via Anonymous and Nested 
Functions” on page 2-19 for information on how to 
supply values for the parameters.

Note  'Hessian' must be set to 'on' for Hinfo to be 
passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for an example.
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Medium-Scale Algorithm Only. These options are used only by the medium-scale 
algorithm:

Examples Find values of x that minimize , starting at the point 
x = [10; 10; 10] and subject to the constraints

HessPattern Sparsity pattern of the Hessian for finite differencing. If 
it is not convenient to compute the sparse Hessian 
matrix H in fun, the large-scale method in fmincon can 
approximate H via sparse finite differences (of the 
gradient) provided the sparsity structure of H — i.e., 
locations of the nonzeros — is supplied as the value for 
HessPattern. In the worst case, if the structure is 
unknown, you can set HessPattern to be a dense matrix 
and a full finite-difference approximation is computed at 
each iteration (this is the default). This can be very 
expensive for large problems, so it is usually worth the 
effort to determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate 
gradient) iterations (see the Algorithm section 
following).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, 
diagonal preconditioning is used (upper bandwidth of 0). 
For some problems, increasing the bandwidth reduces 
the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

DiffMaxChange Maximum change in variables for finite-difference 
gradients.

DiffMinChange Minimum change in variables for finite-difference 
gradients.

MaxSQPIter Maximum number of SQP iterations allowed

f x( ) x1x2x3–=

0 x1 2x2 2x3+ + 72≤ ≤
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First, write an M–file that returns a scalar value f of the function evaluated at 
x.

function f = myfun(x)
f = -x(1) * x(2) * x(3);

Then rewrite the constraints as both less than or equal to a constant,

Since both constraints are linear, formulate them as the matrix inequality 
 where

Next, supply a starting point and invoke an optimization routine.

x0 = [10; 10; 10]; % Starting guess at the solution
[x,fval] = fmincon(@myfun,x0,A,b)

After 66 function evaluations, the solution is

x =
24.0000
12.0000
12.0000

where the function value is 

fval =
-3.4560e+03

and linear inequality constraints evaluate to be less than or equal to 0.

A*x-b= 
-72
0

Notes Large-Scale Optimization. To use the large-scale method, you must 

x1– 2x2– 2x3– 0≤

x1 2x2 2x3+ + 72≤

A x⋅ b≤

A 1– 2– 2–
1 2 2

= b 0
72

=
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• Supply the gradient in fun

• Set GradObj to 'on' in options

• Specify the feasible region using one, but not both, of the following types of 
constraints:

- Upper and lower bounds constraints

- Linear equality constraints, in which the equality constraint matrix Aeq 
cannot have more rows than columns. Aeq is typically sparse. 

You cannot use inequality constraints with the large-scale algorithm. If the 
preceding conditions are not met, quadprog reverts to the medium-scale 
algorithm. 

The function fmincon returns a warning if no gradient is provided and the 
LargeScale option is not 'off'. fmincon permits g(x) to be an approximate 
gradient but this option is not recommended; the numerical behavior of most 
optimization methods is considerably more robust when the true gradient is 
used. See Table 2-4, Large-Scale Problem Coverage and Requirements, on 
page 2-42, for more information on what problem formulations are covered and 
what information you must be provide.

The large-scale method in fmincon is most effective when the matrix of second 
derivatives, i.e., the Hessian matrix H(x), is also computed. However, 
evaluation of the true Hessian matrix is not required. For example, if you can 
supply the Hessian sparsity structure (using the HessPattern option in 
options), fmincon computes a sparse finite-difference approximation to H(x). 

If x0 is not strictly feasible, fmincon chooses a new strictly feasible (centered) 
starting point.

If components of x have no upper (or lower) bounds, then fmincon prefers that 
the corresponding components of ub (or lb) be set to Inf (or -Inf for lb) as 
opposed to an arbitrary but very large positive (or negative in the case of lower 
bounds) number.

Several aspects of linearly constrained minimization should be noted:

• A dense (or fairly dense) column of matrix Aeq can result in considerable fill 
and computational cost.

• fmincon removes (numerically) linearly dependent rows in Aeq; however, 
this process involves repeated matrix factorizations and therefore can be 
costly if there are many dependencies.
5-62



fmincon
• Each iteration involves a sparse least-squares solution with matrix

 

where RT is the Cholesky factor of the preconditioner. Therefore, there is a 
potential conflict between choosing an effective preconditioner and 
minimizing fill in .

Medium-Scale Optimization. Better numerical results are likely if you specify 
equalities explicitly, using Aeq and beq, instead of implicitly, using lb and ub.

If equality constraints are present and dependent equalities are detected and 
removed in the quadratic subproblem, 'dependent' is displayed under the 
Procedures heading (when you ask for output by setting the Display option 
to'iter'). The dependent equalities are only removed when the equalities are 
consistent. If the system of equalities is not consistent, the subproblem is 
infeasible and 'infeasible' is displayed under the Procedures heading.

Algorithm Large-Scale Optimization. The large-scale algorithm is a subspace trust region 
method and is based on the interior-reflective Newton method described in [1], 
[2]. Each iteration involves the approximate solution of a large linear system 
using the method of preconditioned conjugate gradients (PCG). See the trust 
region and preconditioned conjugate gradient method descriptions in the 
“Large-Scale Algorithms” chapter.

Medium-Scale Optimization. fmincon uses a sequential quadratic programming 
(SQP) method. In this method, the function solves a quadratic programming 
(QP) subproblem at each iteration. An estimate of the Hessian of the 
Lagrangian is updated at each iteration using the BFGS formula (see fminunc, 
references [7], [8]).

A line search is performed using a merit function similar to that proposed by 
[4], [5], and [6]. The QP subproblem is solved using an active set strategy 
similar to that described in [3]. A full description of this algorithm is found in 
“Constrained Optimization” on page 3-27 in “Introduction to Algorithms.” 

See also “SQP Implementation” on page 3-30 in “Introduction to Algorithms” 
for more details on the algorithm used.

Limitations fmincon only handles real variables.

Aeq AeqTR T–=

Aeq
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The function to be minimized and the constraints must both be continuous. 
fmincon might only give local solutions.

When the problem is infeasible, fmincon attempts to minimize the maximum 
constraint value.

The objective function and constraint function must be real-valued; that is, 
they cannot return complex values.

The large-scale method does not allow equal upper and lower bounds. For 
example if lb(2)==ub(2), then fmincon gives the error

Equal upper and lower bounds not permitted in this large-scale 
method.
Use equality constraints and the medium-scale method instead.

If you only have equality constraints you can still use the large-scale method. 
But if you have both equalities and bounds, you must use the medium-scale 
method.

See Also @ (function_handle), fminbnd, fminsearch, fminunc, optimset
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5fminimaxPurpose Solve the minimax problem

 

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, and c(x), ceq(x), 
and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be 
nonlinear functions.

Syntax x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)

Description fminimax minimizes the worst-case value of a set of multivariable functions, 
starting at an initial estimate. The values might be subject to constraints. This 
is generally referred to as the minimax problem.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x to the 
functions described in fun.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to the linear 
inequalities A*x <= b.

x = fminimax(fun,x,A,b,Aeq,beq) solves the minimax problem subject to 
the linear equalities Aeq*x = beq as well. Set A=[] and b=[] if no inequalities 
exist.

Fi x( ){ }
Fi{ }

max
x

min such  that c x( ) 0≤

ceq x( ) 0=

A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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x = fminimax(fun,x,A,b,Aeq,beq,lb,ub) defines a set of lower and upper 
bounds on the design variables in x, so that the solution is always in the range 
lb <= x <= ub.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimax 
problem to the nonlinear inequalities c(x) or equality constraints ceq(x) 
defined in nonlcon. fminimax optimizes such that c(x) <= 0 and ceq(x) = 0. 
Set lb=[] and/or ub=[] if no bounds exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes 
with the optimization options specified in the structure options. Use optimset 
to set these options. 

[x,fval] = fminimax(...) returns the value of the objective function fun at 
the solution x.

[x,fval,maxfval] = fminimax(...) returns the maximum function value at 
the solution x.

[x,fval,maxfval,exitflag] = fminimax(...) returns a value exitflag 
that describes the exit condition of fminimax.

[x,fval,maxfval,exitflag,output] = fminimax(...) returns a structure 
output with information about the optimization.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...) returns a 
structure lambda whose fields contain the Lagrange multipliers at the solution 
x.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fminimax. This section provides function-specific details for fun, 
nonlcon, and options:
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fun The function to be minimized. fun is a function that accepts a 
vector x and returns a vector F, the objective functions evaluated 
at x. The function fun can be specified as a function handle for an 
M-file function

x = fminimax(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fminimax(@(x)sin(x.*x),x0);

To minimize the worst case absolute values of any of the elements 
of the vector F(x) (i.e., min{max abs{F(x)} } ), partition those 
objectives into the first elements of F and use optimset to set the 
MinAbsMax option to be the number of such objectives. 

If the gradient of the objective function can also be computed and 
the GradObj option is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output 
argument, the gradient value G, a matrix, at x. Note that by 
checking the value of nargout the function can avoid computing G 
when myfun is called with only one output argument (in the case 
where the optimization algorithm only needs the value of F but 
not G).

function [F,G] = myfun(x)
F = ... % Compute the function values at x
if nargout > 1 % Two output arguments

G = ... % Gradients evaluated at x
end
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The gradient consists of the partial derivative dF/dx of each F at 
the point x. If F is a vector of length m and x has length n, where n 
is the length of x0, then the gradient G of F(x) is an n-by-m matrix 
where G(i,j) is the partial derivative of F(j) with respect to x(i) 
(i.e., the jth column of G is the gradient of the jth objective 
function F(j)).

nonlcon The function that computes the nonlinear inequality constraints 
c(x) <= 0 and nonlinear equality constraints ceq(x) = 0. The 
function nonlcon accepts a vector x and returns two vectors c and 
ceq. The vector c contains the nonlinear inequalities evaluated at 
x, and ceq contains the nonlinear equalities evaluated at x. The 
function nonlcon can be specified as a function handle.

x = fminimax(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x

If the gradients of the constraints can also be computed and the 
GradConstr option is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in the third and 
fourth output arguments, GC, the gradient of c(x), and GCeq, the 
gradient of ceq(x). Note that by checking the value of nargout the 
function can avoid computing GC and GCeq when nonlcon is called 
with only two output arguments (in the case where the 
optimization algorithm only needs the values of c and ceq but not 
GC and GCeq).

function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs

GC = ... % Gradients of the inequalities
GCeq = ... % Gradients of the equalities

end
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fminimax. This section provides function-specific details for 
exitflag, lambda, maxfval, and output:

If nonlcon returns a vector c of m components and x has length n, 
where n is the length of x0, then the gradient GC of c(x) is an 
n-by-m matrix, where GC(i,j) is the partial derivative of c(j) 
with respect to x(i) (i.e., the jth column of GC is the gradient of 
the jth inequality constraint c(j)). Likewise, if ceq has p 
components, the gradient GCeq of ceq(x) is an n-by-p matrix, 
where GCeq(i,j) is the partial derivative of ceq(j) with respect 
to x(i) (i.e., the jth column of GCeq is the gradient of the jth 
equality constraint ceq(j)).

“Avoiding Global Variables via Anonymous and Nested Functions” 
on page 2-19 explains how to parameterize the nonlinear 
constraint function nonlcon, if necessary.

options “Options” on page 5-70 provides the function-specific details for 
the options values.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

4 Magnitude of the search direction less than the 
specified tolerance and constraint violation less 
than options.TolCon

5 Magnitude of directional derivative less than the 
specified tolerance and constraint violation less 
than options.TolCon

0 Number of iterations exceeded options.MaxIter or  
number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output function.

-2 No feasible point was found.
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Options Optimization options used by fminimax. You can use optimset to set or change 
the values of these fields in the options structure options. See “Optimization 
Options” on page 5-9, for detailed information. 

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

maxfval Maximum of the function values evaluated at the solution x, that 
is, maxfval = max{fun(x)}.

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken.

funcCount Number of function evaluations.

algorithm Algorithm used.

DerivativeCheck Compare user-supplied derivatives (gradients of the 
objective or constraints) to finite-differencing 
derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized or solved.

DiffMaxChange Maximum change in variables for finite-difference 
gradients.

DiffMinChange Minimum change in variables for finite-difference 
gradients.
5-70



fminimax
Examples Find values of x that minimize the maximum value of

where

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

GradConstr Gradient for the constraints defined by user. See the 
preceding description of nonlcon to see how to define the 
gradient in nonlcon.

GradObj Gradient for the objective function defined by user. See 
the preceding description of fun to see how to define the 
gradient in fun. You must provide the gradient to use the 
large-scale method. It is optional for the medium-scale 
method.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

MeritFunction Use the goal attainment/minimax merit function if set to 
'multiobj'. Use the fmincon merit function if set to 
'singleobj'.

MinAbsMax Number of F(x) to minimize the worst case absolute 
values.

OutputFcn Specify a user-defined function that is called after each 
iteration of an optimization (medium scale algorithm 
only). See “Output Function” on page 5-15.

TolCon Termination tolerance on the constraint violation.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

  f1 x( )  , f2 x( )  , f3 x( )  , f4 x( )  , f5 x( )  
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First, write an M-file that computes the five functions at x.

function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5)= x(1) + x(2) - 8;

Next, invoke an optimization routine.

x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax(@myfun,x0)

After seven iterations, the solution is

x = 
4.0000
4.0000

fval =
0.0000  -64.0000  -2.0000  -8.0000  -0.0000

Notes You can set the number of objectives for which the worst case absolute values 
of F are minimized in the MinAbsMax option using optimset. You should 
partition these objectives into the first elements of F.

For example, consider the preceding problem, which requires finding values of 
x that minimize the maximum absolute value of 

Solve this problem by invoking fminimax with the commands

f1 x( ) 2x1
2 x2

2 48x1 40x2 304+––+=

f2 x( ) x2
2– 3x2

2–=

f3 x( ) x1 3x2 18–+=

f4 x( ) x1– x2–=

f5 x( ) x1 x2 8.–+=

  f1 x( )  , f2 x( )  , f3 x( )  , f4 x( )  , f5 x( )  
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x0 = [0.1; 0.1];        % Make a starting guess at the solution
options = optimset('MinAbsMax',5); % Minimize absolute values
[x,fval] = fminimax(@myfun,x0,[],[],[],[],[],[],[],options);

After seven iterations, the solution is

x = 
4.9256
2.0796

fval = 
37.2356 -37.2356 -6.8357 -7.0052 -0.9948

If equality constraints are present, and dependent equalities are detected and 
removed in the quadratic subproblem, 'dependent' is displayed under the 
Procedures heading (when the Display option is set to 'iter'). The 
dependent equalities are only removed when the equalities are consistent. If 
the system of equalities is not consistent, the subproblem is infeasible and 
'infeasible' is displayed under the Procedures heading.

Algorithm fminimax uses a sequential quadratic programming (SQP) method [1]. 
Modifications are made to the line search and Hessian. In the line search an 
exact merit function (see [2] and [4]) is used together with the merit function 
proposed by [3] and [5]. The line search is terminated when either merit 
function shows improvement. The function uses a modified Hessian that takes 
advantage of the special structure of this problem. Using optimset to set the 
MeritFunction option to'singleobj' uses the merit function and Hessian 
used in fmincon.

See also “SQP Implementation” on page 3-30 for more details on the algorithm 
used and the types of procedures printed under the Procedures heading when 
you set the Display option to'iter'.

Limitations The function to be minimized must be continuous. fminimax might only give 
local solutions. 

See Also @ (function_handle), fgoalattain, lsqnonlin, optimset

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New 
Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and 
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Function Splitting,” IEEE Trans. Circuits and Systems, Vol. CAS-26, pp. 
784-794, Sept. 1979.

[2] Grace, A.C.W., “Computer-Aided Control System Design Using 
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor, 
Gwynedd, UK, 1989.

[3] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” 
Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.

[4] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance 
Optimization,” IEEE Trans. of Circuits and Systems, Vol. CAS-26, Sept. 1979.

[5] Powell, M.J.D., “A Fast Algorithm for Nonlineary Constrained 
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson, Lecture 
Notes in Mathematics, Vol. 630, Springer Verlag, 1978.
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5fminsearchPurpose Find a minimum of an unconstrained multivariable function

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch attempts to find a minimum of a scalar function of several 
variables, starting at an initial estimate. This is generally referred to as 
unconstrained nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and attempts to find a local 
minimum x of the function described in fun. x0 can be a scalar, vector, or 
matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,fval] = fminsearch(...) returns in fval the value of the objective 
function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that 
describes the exit condition of fminsearch.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output 
that contains information about the optimization.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fminsearch. This section provides function-specific details for fun 
and options:

f x( )
x

min
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fminsearch. This section provides function-specific details for 
exitflag and output:

fun The function to be minimized. fun is a function that accepts a 
vector x and returns a scalar f, the objective function evaluated at 
x. The function fun can be specified as a function handle for an 
M-file function

x = fminsearch(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminsearch(@(x)norm(x)^2,x0,A,b);

options “Options” on page 5-77 provides the function-specific details for 
the options values.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 The function converged to a solution x.

0 Number of iterations exceeded options.MaxIter or  
number of function evaluations exceeded 
options.FunEvals.

-1 The algorithm was terminated by the output 
function.

output Structure containing information about the optimization. The 
fields of the structure are

algorithm Algorithm used

funcCount Number of function evaluations

iterations Number of iterations

message Exit message
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Options Optimization options used by fminsearch. You can use optimset to set or 
change the values of these fields in the options structure options. See 
“Optimization Options” on page 5-9, for detailed information:

Examples Minimize the one-dimensional function f(x) = sin(x) + 3.

To use an M-file, i.e., fun = 'myfun', create a file myfun.m.

function f = myfun(x)
f = sin(x) + 3;

Then call fminsearch to find a minimum of fun near 2.

x = fminsearch(@myfun,2)

To minimize the function f(x) = sin(x) + 3 using an anonymous function:

f = @(x)sin(x)+3;
x = fminsearch(f,2);

If fun is parameterized, you can use anonymous functions to capture the 
problem-dependent parameters. For example, suppose you want to minimize 
the objective function myfun defined by the following M-file function.

Display Level of display. 'off' displays no output; 'iter' displays 
output at each iteration; 'final' displays just the final 
output; 'notify' (default) displays output only if the function 
does not converge.

FunValCheck Check whether objective function values are valid. 'on' 
displays a warning when the objective function returns a 
value that is complex or NaN. 'off' (the default) displays no 
warning.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify a user-defined function that an opimization function 
calls at each iteration. See “Output Function” on page 5-15.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.
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function f = myfun(x,a)
f = x(1)^2 + a*x(2)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly to 
fminsearch. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a. 
a = 1.5; % define parameter first

2 Call fminsearch with a one-argument anonymous function that captures 
that value of a and calls myfun with two arguments:
x = fminbnd(@(x) myfun(x,a),0,1)

Algorithms fminsearch uses the simplex search method of [1]. This is a direct search 
method that does not use numerical or analytic gradients as in fminunc.

If n is the length of x, a simplex in n-dimensional space is characterized by the 
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle; 
in three-space, it is a pyramid. At each step of the search, a new point in or near 
the current simplex is generated. The function value at the new point is 
compared with the function’s values at the vertices of the simplex and, usually, 
one of the vertices is replaced by the new point, giving a new simplex. This step 
is repeated until the diameter of the simplex is less than the specified 
tolerance.

fminsearch is generally less efficient than fminunc for problems of order 
greater than two. However, when the problem is highly discontinuous, 
fminsearch might be more robust.

Limitations fminsearch can often handle discontinuity, particularly if it does not occur 
near the solution. fminsearch might only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only consist 
of real numbers and f(x) must only return real numbers. When x has complex 
variables, they must be split into real and imaginary parts.
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Note  fminsearch is not the preferred choice for solving problems that are 
sums of squares, that is, of the form  . 
Instead use the lsqnonlin function, which has been optimized for problems of 
this form.

See Also @ (function_handle), fminbnd, fminunc, optimset, anonymous functions

References [1] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence 
Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM 
Journal of Optimization, Vol. 9, Number 1, pp.112-147, 1998.

f x( )min f1 x( )2 f2 x( )2 f3 x( )2 L+ + +=
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5fminuncPurpose Find a minimum of an unconstrained multivariable function

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)

Description fminunc attempts to find a minimum of a scalar function of several variables, 
starting at an initial estimate. This is generally referred to as unconstrained 
nonlinear optimization.

x = fminunc(fun,x0) starts at the point x0 and attempts to find a local 
minimum x of the function described in fun. x0 can be a scalar, vector, or 
matrix. 

x = fminunc(fun,x0,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,fval] = fminunc(...) returns in fval the value of the objective function 
fun at the solution x.

[x,fval,exitflag] = fminunc(...) returns a value exitflag that describes 
the exit condition.

[x,fval,exitflag,output] = fminunc(...) returns a structure output that 
contains information about the optimization.

[x,fval,exitflag,output,grad] = fminunc(...) returns in grad the value 
of the gradient of fun at the solution x.

f x( )
x

min
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[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in 
hessian the value of the Hessian of the objective function fun at the solution x. 
See “Hessian” on page 5-83.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fminunc. This section provides function-specific details for fun and 
options:

fun The function to be minimized. fun is a function that accepts a vector 
x and returns a scalar f, the objective function evaluated at x. The 
function fun can be specified as a function handle for an M-file 
function

x = fminunc(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminunc(@(x)norm(x)^2,x0);

If the gradient of fun can also be computed and the GradObj option 
is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, 
the gradient value g, a vector, at x. Note that by checking the value 
of nargout the function can avoid computing g when fun is called 
with only one output argument (in the case where the optimization 
algorithm only needs the value of f but not g).

function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments

g = ... % Compute the gradient evaluated at x
end
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fminunc. This section provides function-specific details for 
exitflag and output:

The gradient is the partial derivatives  of f at the point x. 
That is, the ith component of g is the partial derivative of f with 
respect to the ith component of x.

If the Hessian matrix can also be computed and the Hessian option 
is 'on', i.e., options = optimset('Hessian','on'), then the 
function fun must return the Hessian value H, a symmetric matrix, 
at x in a third output argument. Note that by checking the value of 
nargout you can avoid computing H when fun is called with only one 
or two output arguments (in the case where the optimization 
algorithm only needs the values of f and g but not H).

function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments

g = ... % Gradient of the function evaluated at x
if nargout > 2

H = ... % Hessian evaluated at x
end

end

The Hessian matrix is the second partial derivatives matrix of f at 
the point x. That is, the (i,j)th component of H is the second partial 
derivative of f with respect to xi and xj, . The Hessian is 
by definition a symmetric matrix.

options “Options” on page 5-84 provides the function-specific details for the 
options values.

f∂ x∂⁄

∂2f ∂xi∂xj⁄

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

2 Change in x was smaller than the specified 
tolerance.
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Hessian
fminunc computes the output argument hessian as follows:

• When using the medium-scale algorithm, the function computes a 
finite-difference approximation to the Hessian at x using

- The gradient grad if you supply it

- The objective function fun if you do not supply the gradient

• When using the large-scale algorithm, the function uses

- options.Hessian, if you supply it, to compute the Hessian at x

3 Change in the objective function value was less  
than the specified tolerance.

0 Number of iterations exceeded options.MaxIter 
or number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output 
function.

-2 Line search could not sufficiently decrease the 
objective function along the current search 
direction.

grad Gradient at x

hessian Hessian at x

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used.

cgiterations Number of PCG iterations (large-scale algorithm 
only)

stepsize Final step size taken (medium-scale algorithm 
only)
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- A finite-difference approximation to the Hessian at x, if you supply only 
the gradient

Options fminunc uses these optimization options. Some options apply to all algorithms, 
some are only relevant when you are using the large-scale algorithm, and 
others are only relevant when you are using the medium-scale algorithm.You 
can use optimset to set or change the values of these fields in the options 
structure options. See “Optimization Options” on page 5-9, for detailed 
information. 

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference, because certain conditions must be met to use the large-scale 
algorithm. For fminunc, you must provide the gradient (see the preceding 
description of fun) or else use the medium-scale algorithm.:

Large-Scale and Medium-Scale Algorithms. These options are used by both the 
large-scale and medium-scale algorithms:

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'.

DerivativeCheck Compare user-supplied derivatives (gradient) to 
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

GradObj Gradient for the objective function that you define. See 
the preceding description of fun to see how to define the 
gradient in fun. You must provide the gradient to use the 
large-scale method. It is optional for the medium-scale 
method.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.
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Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.

Hessian If 'on', fminunc uses a user-defined Hessian (defined in 
fun), or Hessian information (when using HessMult), for 
the objective function. If 'off', fminunc approximates 
the Hessian using finite differences.

HessMult Function handle for Hessian multiply function. For 
large-scale structured problems, this function computes 
the Hessian matrix product H*Y without actually forming 
H. The function is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional parameters 
p1,p2,... contain the matrices used to compute H*Y. 

The first argument must be the same as the third 
argument returned by the objective function fun, for 
example by

[f,g,Hinfo] = fun(x)
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Y is a matrix that has the same number of rows as there 
are dimensions in the problem. W = H*Y although H is not 
formed explicitly. fminunc uses Hinfo to compute the 
preconditioner. The optional parameters p1, p2, ... can be 
any additional parameters needed by hmfun. See 
“Avoiding Global Variables via Anonymous and Nested 
Functions” on page 2-19 for information on how to supply 
values for the parameters.

Note  'Hessian' must be set to 'on' for Hinfo to be 
passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for an example.

HessPattern Sparsity pattern of the Hessian for finite differencing. If 
it is not convenient to compute the sparse Hessian 
matrix H in fun, the large-scale method in fminunc can 
approximate H via sparse finite differences (of the 
gradient) provided the sparsity structure of H — i.e., 
locations of the nonzeros — is supplied as the value for 
HessPattern. In the worst case, if the structure is 
unknown, you can set HessPattern to be a dense matrix 
and a full finite-difference approximation is computed at 
each iteration (this is the default). This can be very 
expensive for large problems, so it is usually worth the 
effort to determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate 
gradient) iterations (see “Algorithms” on page 5-89).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, 
diagonal preconditioning is used (upper bandwidth of 0). 
For some problems, increasing the bandwidth reduces 
the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.
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Medium-Scale Algorithm Only. These options are used only by the medium-scale 
algorithm:

Examples Minimize the function .

To use an M-file, create a file myfun.m.

function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function

Then call fminunc to find a minimum of myfun near [1,1].

DiffMaxChange Maximum change in variables for finite-difference 
gradients.

DiffMinChange Minimum change in variables for finite-difference 
gradients.

HessUpdate Method for choosing the search direction in the 
Quasi-Newton algorithm. The choices are

• 'bfgs'
• 'dfp'
• 'steepdesc'

See “Hessian Update” on page 3-10 for a description of 
these methods.

InitialHessMatrix Initial quasi-Newton matrix. This option is only 
available if you set InitialHessType to 
'user-supplied'. In that case, you can set 
InitialHessMatrix to one of the following:

• scalar —  the initial matrix is the scalar times the 
identity

• vector — the initial matrix is a diagonal matrix with 
the entries of the vector on the diagonal.

InitialHessType Initial quasi-Newton matrix type. The options are

• {'identity'}
• 'scaled-identity'
• 'user-supplied'

f x( ) 3x1
2 2x1x2 x2

2+ +=
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x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)

After a couple of iterations, the solution, x, and the value of the function at x, 
fval, are returned.

x =
  1.0e-008 *

-0.7512    0.2479
fval =
  1.3818e-016

To minimize this function with the gradient provided, modify the M-file 
myfun.m so the gradient is the second output argument

function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
if nargout > 1

g(1) = 6*x(1)+2*x(2);
g(2) = 2*x(1)+2*x(2);

end

and indicate that the gradient value is available by creating an optimization 
options structure with the GradObj option set to 'on' using optimset.

options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options)

After several iterations the solution, x, and fval, the value of the function at 
x, are returned.

x =
  1.0e-015 *

0.1110   -0.8882
fval2 =
  6.2862e-031

To minimize the function f(x) = sin(x) + 3 using an anonymous function

f = @(x)sin(x)+3;
x = fminunc(f,4)

which returns a solution
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x =
    4.7124

Notes fminunc is not the preferred choice for solving problems that are sums of 
squares, that is, of the form 

Instead use the lsqnonlin function, which has been optimized for problems of 
this form.

To use the large-scale method, you must provide the gradient in fun (and set 
the GradObj option to 'on' using optimset). A warning is given if no gradient 
is provided and the LargeScale option is not 'off'.

Algorithms Large-Scale Optimization. By default fminunc chooses the large-scale algorithm if 
the user supplies the gradient in fun (and the GradObj option is set to 'on' 
using optimset). This algorithm is a subspace trust region method and is based 
on the interior-reflective Newton method described in [2],[3]. Each iteration 
involves the approximate solution of a large linear system using the method of 
preconditioned conjugate gradients (PCG). See “Trust-Region Methods for 
Nonlinear Minimization” on page 4-2 and “Preconditioned Conjugate 
Gradients” on page 4-5. 

Medium-Scale Optimization. fminunc, with the LargeScale option set to off  
with optimset, uses the BFGS Quasi-Newton method with a mixed quadratic 
and cubic line search procedure. This quasi-Newton method uses the BFGS 
([1],[5],[8],[9]) formula for updating the approximation of the Hessian matrix. 
You can select the DFP ([4],[6],[7]) formula, which approximates the inverse 
Hessian matrix, by setting the HessUpdate option to 'dfp' (and the 
LargeScale option to 'off'). You can select a steepest descent method by 
setting HessUpdate to 'steepdesc' (and LargeScale to 'off'), although this 
is not recommended.

The default line search algorithm, i.e., when the LineSearchType option is set 
to 'quadcubic', is a safeguarded mixed quadratic and cubic polynomial 
interpolation and extrapolation method. You can select a safeguarded cubic 
polynomial method by setting the LineSearchType option to 'cubicpoly'. This 
second method generally requires fewer function evaluations but more 
gradient evaluations. Thus, if gradients are being supplied and can be 

min f x( ) f1 x( )2 f2 x( )2 f3 x( )2 L+ + +=
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calculated inexpensively, the cubic polynomial line search method is 
preferable. “Standard Algorithms” on page 3-1 provides a full description of the 
algorithms.

Limitations The function to be minimized must be continuous. fminunc might only give 
local solutions.

fminunc only minimizes over the real numbers, that is, x must only consist of 
real numbers and f(x) must only return real numbers. When x has complex 
variables, they must be split into real and imaginary parts.

Large-Scale Optimization. To use the large-scale algorithm, the user must supply 
the gradient in fun (and GradObj must be set 'on' in options). See Table 2-4, 
Large-Scale Problem Coverage and Requirements, on page 2-42, for more 
information on what problem formulations are covered and what information 
must be provided.

See Also @ (function_handle), fminsearch, optimset, anonymous functions

References [1] Broyden, C.G., “The Convergence of a Class of Double-Rank Minimization 
Algorithms,” Journal Inst. Math. Applic., Vol. 6, pp. 76-90, 1970.
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5fseminfPurpose Find a minimum of a semi-infinitely constrained multivariable nonlinear 
function

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x), ceq(x), and 
Ki(x,wi) are functions that return vectors, and f(x) is a function that returns a 
scalar.  f(x), c(x), and ceq(x) can be nonlinear functions. The vectors (or 
matrices)  are continuous functions of both x and an additional set 
of variables . The variables  are vectors of, at 
most, length two.

Syntax x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)

Description fseminf finds a minimum of a semi-infinitely constrained scalar function of 
several variables, starting at an initial estimate. The aim is to minimize f(x) so 
the constraints hold for all possible values of  (or ). Because it 

f x( )
x

min subject to c x( ) 0  ,≤

                                         ceq x( ) 0=

                                       
                                      

A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤

K1 x w1,( ) 0≤

K2 x w2,( ) 0≤

…

Kn x wn,( ) 0≤

Ki x wi,( ) 0≤
w1 w2 … wn, , , w1 w2 … wn, , ,

wi ℜ1∈ wi ℜ2∈
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is impossible to calculate all possible values of , a region must be 
chosen for  over which to calculate an appropriately sampled set of values.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a minimum of 
the function fun constrained by ntheta semi-infinite constraints defined in 
seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy the linear 
inequalities A*x <= b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes subject to 
the linear equalities Aeq*x = beq as well. Set A=[] and b=[] if no inequalities 
exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub) defines a set 
of lower and upper bounds on the design variables in x, so that the solution is 
always in the range lb <= x <= ub.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
minimizes with the optimization options specified in the structure options. 
Use optimset to set these options. 

[x,fval] = fseminf(...) returns the value of the objective function fun at 
the solution x.

[x,fval,exitflag] = fseminf(...) returns a value exitflag that describes 
the exit condition.

[x,fval,exitflag,output] = fseminf(...) returns a structure output that 
contains information about the optimization.

[x,fval,exitflag,output,lambda] = fseminf(...) returns a structure 
lambda whose fields contain the Lagrange multipliers at the solution x.

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Ki x wi,( )
wi
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Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fseminf. This section provides function-specific details for fun, 
ntheta, options, and seminfcon:

fun The function to be minimized. fun is a function that accepts a 
vector x and returns a scalar f, the objective function evaluated at 
x. The function fun can be specified as a function handle for an 
M-file function

x = fseminf(@myfun,x0,ntheta,seminfcon)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

fun = @(x)sin(x''*x);

If the gradient of fun can also be computed and the GradObj 
option is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output 
argument, the gradient value g, a vector, at x. Note that by 
checking the value of nargout the function can avoid computing g 
when fun is called with only one output argument (in the case 
where the optimization algorithm only needs the value of f but 
not g).

function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments

g = ... % Compute the gradient evaluated at x
end

The gradient is the partial derivatives of f at the point x. That is, 
the ith component of g is the partial derivative of f with respect 
to the ith component of x.

ntheta The number of semi-infinite constraints.
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options “Options” on page 5-98 provides the function-specific details for 
the options values.
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seminfcon The function that computes the vector of nonlinear inequality 
constraints, c, a vector of nonlinear equality constraints, ceq, and 
ntheta semi-infinite constraints (vectors or matrices) K1, K2,...,   
Kntheta evaluated over an interval S at the point x. The function 
seminfcon can be specified as a function handle.

x = fseminf(@myfun,x0,ntheta,@myinfcon)

where myinfcon is a MATLAB function such as

function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)
% Initial sampling interval
if isnan(S(1,1)),

S = ...% S has ntheta rows and 2 columns
end
w1 = ...% Compute sample set
w2 = ...% Compute sample set 
...
wntheta = ... % Compute sample set
K1 = ... % 1st semi-infinite constraint at x and w
K2 = ... % 2nd semi-infinite constraint at x and w
...
Kntheta = ...% Last semi-infinite constraint at x and w
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x

S is a recommended sampling interval, which might or might not 
be used. Return [] for c and ceq if no such constraints exist.

The vectors or matrices K1, K2, ..., Kntheta contain the 
semi-infinite constraints evaluated for a sampled set of values for 
the independent variables w1, w2, ... wntheta, respectively. The 
two column matrix, S, contains a recommended sampling interval 
for values of w1, w2, ..., wntheta, which are used to evaluate 
K1, K2, ..., Kntheta. The ith row of S contains the recommended 
sampling interval for evaluating Ki. When Ki is a vector, use only 
S(i,1) (the second column can be all zeros). When Ki is a matrix, 
S(i,2) is used for the sampling of the rows in Ki, S(i,1) is used 
for the sampling interval of the columns of Ki (see 
“Two-Dimensional Example” on page 5-101). On the first iteration 
S is NaN, so that some initial sampling interval must be 
determined by seminfcon.
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fseminf. This section provides function-specific details for 
exitflag , lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

4 Magnitude of the search direction was less than the 
specified tolerance and constraint violation was less 
than options.TolCon.

5 Magnitude of directional derivative was less than 
the specified tolerance and constraint violation was 
less than options.TolCon.

0 Number of iterations exceeded options.MaxIter or  
number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output function.

-2 No feasible point was found.

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations
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Options Optimization options used by fseminf. You can use optimset to set or change 
the values of these fields in the options structure options. See “Optimization 
Options” on page 5-9, for detailed information.

algorithm Algorithm used

stepsize Final step size taken

DerivativeCheck Compare user-supplied derivatives (gradients) to 
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized or solved.

DiffMaxChange Maximum change in variables for finite-difference 
gradients.

DiffMinChange Minimum change in variables for finite-difference 
gradients.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

GradObj Gradient for the objective function defined by the user. 
See the description of fun above to see how to define the 
gradient in fun. You must provide the gradient to use the 
large-scale method. It is optional for the medium-scale 
method.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” on 
page 5-15.

TolCon Termination tolerance on the constraint violation.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.
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Notes The optimization routine fseminf might vary the recommended sampling 
interval, S, set in seminfcon, during the computation because values other 
than the recommended interval might be more appropriate for efficiency or 
robustness. Also, the finite region , over which  is calculated, is 
allowed to vary during the optimization, provided that it does not result in 
significant changes in the number of local minima in .

Examples One-Dimensional Example

Find values of x that minimize

where

for all values of  and  over the ranges

Note that the semi-infinite constraints are one-dimensional, that is, vectors. 
Because the constraints must be in the form  you need to compute 
the constraints as

First, write an M-file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);

wi Ki x wi,( )

Ki x wi,( )

f x( ) x1 0.5–( )2 x2 0.5–( )2 x3 0.5–( )2+ +=

K1 x w1,( ) w1x1( )sin w1x2( )cos 1
1000
------------- w1 50–( )2 w1x3( )sin x3 1≤–––=

K2 x w2,( ) w2x2( )sin w2x1( )cos 1
1000
------------- w2 50–( )2 w2x3( )sin x3 1≤–––=

w1 w2

1 w1 100≤ ≤

1 w2 100≤ ≤

Ki x wi,( ) 0≤

K1 x w1,( ) w1x1( )sin w1x2( )cos 1
1000
------------- w1 50–( )2 w1x3( )sin x3 1– 0≤–––=

K2 x w2,( ) w2x2( )sin w2x1( )cos 1
1000
------------- w2 50–( )2 w2x3( )sin x3 1– 0≤–––=
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Second, write an M-file, mycon.m, that computes the nonlinear equality and 
inequality constraints and the semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
w2 = 1:s(2,1):100;

% Semi-infinite constraints 
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...

sin(w1*X(3))-X(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...

sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints
c = []; ceq=[];

% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':'),title('Semi-infinite constraints')
drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon)

After eight iterations, the solution is

x =
0.6673
0.3013
0.4023

The function value and the maximum values of the semi-infinite constraints at 
the solution x are

fval =
0.0770
5-100



fseminf
[c,ceq,K1,K2] = mycon(x,NaN); % Use initial sampling interval
max(K1)
ans =

-0.0017
max(K2)
ans =

-0.0845

A plot of the semi-infinite constraints is produced.

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside 'mycon.m' slows down the computation. Remove this 
line to improve the speed.

Two-Dimensional Example

Find values of x that minimize 

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0
Semi−infinite constraints
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where

for all values of  and  over the ranges

starting at the point .

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write an M-file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);

Second, write an M-file for the constraints, called mycon.m. Include code to 
draw the surface plot of the semi-infinite constraint each time mycon is called. 
This enables you to see how the constraint changes as X is being minimized.

function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
   s = [2 2];
end

% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);

% Semi-infinite constraint 
K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).^2 -...
       sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...

f x( ) x1 0.2–( )2 x2 0.2–( )2 x3 0.2–( )2+ +=

K1 x w,( ) w1x1( )sin w2x2( )cos 1
1000
------------- w1 50–( )2 w1x3( )sin x3 …+–––=

w2x2( )sin w1x1( )cos 1
1000
------------- w2 50–( )2 w2x3( )sin x3– 1.5≤+––

w1 w2

1 w1 100≤ ≤

1 w2 100≤ ≤

x 0.25 0.25 0.25, ,[ ]=
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       1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;

% No finite nonlinear constraints
c = []; ceq=[];

% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

x =
0.2926    0.1874    0.2202

and the function value at the solution is

fval = 
0.0091

The goal was to minimize the objective  such that the semi-infinite 
constraint satisfied . Evaluating mycon at the solution x and 
looking at the maximum element of the matrix K1 shows the constraint is easily 
satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))

ans =
-0.0027

This call to mycon produces the following surf plot, which shows the 
semi-infinite constraint at x.

f x( )
K1 x w,( ) 1.5≤
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Algorithm fseminf uses cubic and quadratic interpolation techniques to estimate peak 
values in the semi-infinite constraints. The peak values are used to form a set 
of constraints that are supplied to an SQP method as in the function fmincon. 
When the number of constraints changes, Lagrange multipliers are reallocated 
to the new set of constraints.

The recommended sampling interval calculation uses the difference between 
the interpolated peak values and peak values appearing in the data set to 
estimate whether the function needs to take more or fewer points. The function 
also evaluates the effectiveness of the interpolation by extrapolating the curve 
and comparing it to other points in the curve. The recommended sampling 
interval is decreased when the peak values are close to constraint boundaries, 
i.e., zero.

See also “SQP Implementation” on page 3-30 for more details on the algorithm 
used and the types of procedures displayed under the Procedures heading 
when the Display option is set to 'iter'with optimset.
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Limitations The function to be minimized, the constraints, and semi-infinite constraints, 
must be continuous functions of x and w. fseminf might only give local 
solutions.

When the problem is not feasible, fseminf attempts to minimize the maximum 
constraint value.

See Also @ (function_handle), fmincon, optimset
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5fsolvePurpose Solve a system of nonlinear equations

for x, where x is a vector and F(x) is a function that returns a vector value.

Syntax x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
[x,fval] = fsolve(...)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)

Description fsolve finds a root (zero) of a system of nonlinear equations.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations described in 
fun. 

x = fsolve(fun,x0,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,fval] = fsolve(fun,x0) returns the value of the objective function fun at 
the solution x.

[x,fval,exitflag] = fsolve(...) returns a value exitflag that describes 
the exit condition.

[x,fval,exitflag,output] = fsolve(...) returns a structure output that 
contains information about the optimization.

[x,fval,exitflag,output,jacobian] = fsolve(...) returns the Jacobian 
of fun at the solution x

“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fsolve. This section provides function-specific details for fun and 
options:

F x( ) 0=
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fsolve. This section provides function-specific details for exitflag 
and output:

fun The nonlinear system of equations to solve. fun is a function that 
accepts a vector x and returns a vector F, the nonlinear equations 
evaluated at x. The function fun can be specified as a function 
handle for an M-file function

x = fsolve(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

If the Jacobian can also be computed and the Jacobian option is 
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument, 
the Jacobian value J, a matrix, at x. Note that by checking the 
value of nargout the function can avoid computing J when fun is 
called with only one output argument (in the case where the 
optimization algorithm only needs the value of F but not J).

function [F,J] = myfun(x)
F = ... % objective function values at x
if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has length n, 
where n is the length of x0, then the Jacobian J is an m-by-n matrix 
where J(i,j) is the partial derivative of F(i) with respect to x(j). 
(Note that the Jacobian J is the transpose of the gradient of F.)

options “Options” on page 5-109 provides the function-specific details for 
the options values.
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exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

2 Change in x was smaller than the specified 
tolerance.

3 Change in the residual was smaller than the 
specified tolerance.

4 Magnitude of search direction was smaller than 
the specified tolerance.

0 Number of iterations exceeded options.MaxIter 
or number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output function.

-2 Algorithm appears to be converging to a point 
that is not a root.

-3 Trust radius became too small.

-4 Line search cannot sufficiently decrease the 
residual along the current search direction.

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used.

cgiterations Number of PCG iterations (large-scale algorithm 
only)

stepsize Final step size taken (medium-scale algorithm 
only)
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Options Optimization options used by fsolve. Some options apply to all algorithms, 
some are only relevant when using the large-scale algorithm, and others are 
only relevant when using the medium-scale algorithm.You can use optimset to 
set or change the values of these fields in the options structure, options. See 
“Optimization Options” on page 5-9, for detailed information. 

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference because certain conditions must be met to use the large-scale 
algorithm. For fsolve, the nonlinear system of equations cannot be 
underdetermined; that is, the number of equations (the number of elements of 
F returned by fun) must be at least as many as the length of x or else the 
medium-scale algorithm is used:

Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

firstorderopt Measure of first-order optimality (large-scale 
algorithm only)

For large-scale problems, the first-order 
optimality is the infinity norm of the gradient 
g = JTF (see “Nonlinear Least-Squares” on 
page 4-10).

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'. The 
default for fsolve is 'off'.

DerivativeCheck Compare user-supplied derivatives (Jacobian) to 
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to 
be minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.
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Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

Jacobian If 'on', fsolve uses a user-defined Jacobian (defined 
in fun), or Jacobian information (when using 
JacobMult), for the objective function. If 'off', 
fsolve approximates the Jacobian using finite 
differences.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.
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JacobMult Function handle for Jacobian multiply function. For 
large-scale structured problems, this function 
computes the Jacobian matrix product J*Y,  J'*Y, or 
J'*(J*Y) without actually forming J. The function is 
of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters 
p1,p2,... contain the matrices used to compute J*Y 
(or J'*Y, or J'*(J*Y)). The first argument Jinfo must 
be the same as the second argument returned by the 
objective function fun, for example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as 
there are dimensions in the problem. flag determines 
which product to compute:

• If flag == 0 then W = J'*(J*Y). 

• If flag > 0 then W = J*Y. 

• If flag < 0 then W = J'*Y.  

In each case, J is not formed explicitly. fsolve uses 
Jinfo to compute the preconditioner. The optional 
parameters p1, p2, ... can be any additional 
parameters needed by jmfun. See “Avoiding Global 
Variables via Anonymous and Nested Functions” on 
page 2-19 for information on how to supply values for 
these parameters.

Note  'Jacobian' must be set to 'on' for Jinfo to be 
passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for a similar example.
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Medium-Scale Algorithm Only. These options are used only by the medium-scale 
algorithm:

Examples Example 1.  This example finds a zero of the system of two equations and two 
unknowns:

JacobPattern Sparsity pattern of the Jacobian for finite differencing. 
If it is not convenient to compute the Jacobian matrix 
J in fun, lsqnonlin can approximate J via sparse 
finite differences provided the structure of J — i.e., 
locations of the nonzeros — is supplied as the value for 
JacobPattern. In the worst case, if the structure is 
unknown, you can set JacobPattern to be a dense 
matrix and a full finite-difference approximation is 
computed in each iteration (this is the default if 
JacobPattern is not set). This can be very expensive 
for large problems, so it is usually worth the effort to 
determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate 
gradient) iterations (see “Algorithm” on page 5-115).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By 
default, diagonal preconditioning is used (upper 
bandwidth of 0). For some problems, increasing the 
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

DiffMaxChange Maximum change in variables for finite differencing.

DiffMinChange Minimum change in variables for finite differencing.

NonlEqnAlgorithm Choose Levenberg-Marquardt or Gauss-Newton over 
the trust region dogleg algorithm.

LineSearchType Line search algorithm choice.

2x1 x2– e x1–=

x1– 2x2+ e x– 2=
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You want to solve the following system for x

starting at x0 = [-5 -5].

First, write an M-file that computes F, the values of the equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));
      -x(1) + 2*x(2) - exp(-x(2))];

Next, call an optimization routine.

x0 = [-5; -5]; % Make a starting guess at the solution
options=optimset('Display','iter');   % Option to display output
[x,fval] = fsolve(@myfun,x0,options)  % Call optimizer

After 33 function evaluations, a zero is found.

                                  Norm of  First-order Trust-region
Iteration Func-count    f(x)        step   optimality       radius
    0        3       23535.6                2.29e+004        1
    1        6       6001.72           1    5.75e+003        1
    2        9       1573.51           1    1.47e+003        1
    3       12       427.226           1          388        1
    4       15       119.763           1          107        1
    5       18       33.5206           1         30.8        1
    6       21       8.35208           1         9.05        1
    7       24       1.21394           1         2.26        1
    8       27      0.016329    0.759511        0.206      2.5
    9       30  3.51575e-006    0.111927      0.00294      2.5
   10       33  1.64763e-013  0.00169132    6.36e-007      2.5
Optimization terminated successfully:
 First-order optimality is less than options.TolFun

x =
    0.5671
    0.5671

fval =

2x1 x2– e x1–– 0=

x1– 2x2 e x– 2–+ 0=
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  1.0e-006 *
      -0.4059
      -0.4059

Example 2.  Find a matrix x that satisfies the equation

starting at the point x= [1,1; 1,1]. 

First, write an M-file that computes the equations to be solved.

function F = myfun(x)
F = x*x*x-[1,2;3,4];

Next, invoke an optimization routine.

x0 = ones(2,2); % Make a starting guess at the solution
options = optimset('Display','off');  % Turn off Display
[x,Fval,exitflag] = fsolve(@myfun,x0,options)

The solution is

x =
-0.1291    0.8602
1.2903    1.1612 

Fval =
  1.0e-009 *
    -0.1619    0.0776
     0.1161   -0.0469

exitflag =
     1

and the residual is close to zero.

sum(sum(Fval.*Fval))
ans = 

4.7915e-020

X X X∗ ∗
1  2
   
3  4

 =
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Notes If the system of equations is linear, use the \ (the backslash operator; see help 
slash) for better speed and accuracy. For example, to find the solution to the 
following linear system of equations:

You can formulate and solve the problem as

A = [ 3 11 -2; 1 1 -2; 1 -1 1];
b = [ 7; 4; 19];
x = A\b
x =
   13.2188
   -2.3438
    3.4375

Algorithm The Gauss-Newton, Levenberg-Marquardt, and large-scale methods are based 
on the nonlinear least-squares algorithms also used in lsqnonlin. Use one of 
these methods if the system may not have a zero. The algorithm still returns a 
point where the residual is small. However, if the Jacobian of the system is 
singular, the algorithm might converge to a point that is not a solution of the 
system of equations (see “Limitations” and “Diagnostics” following).

Large-Scale Optimization. fsolve, with the LargeScale option set to 'on' with 
optimset, uses the large-scale algorithm if possible. This algorithm is a 
subspace trust region method and is based on the interior-reflective Newton 
method described in [1],[2]. Each iteration involves the approximate solution of 
a large linear system using the method of preconditioned conjugate gradients 
(PCG). See “Trust-Region Methods for Nonlinear Minimization” on page 4-2 
and “Preconditioned Conjugate Gradients” on page 4-5. 

Medium-Scale Optimization. By default fsolve chooses the medium-scale 
algorithm and uses the trust-region dogleg method. The algorithm is a variant 
of the Powell dogleg method described in [8]. It is similar in nature to the 
algorithm implemented in [7].

Alternatively, you can select a Gauss-Newton method [3] with line-search, or a 
Levenberg-Marquardt method [4], [5], [6] with line-search. The choice of 

3x1 11x2 2x3–+ 7=

x1 x2 2x3–+ 4=

x1 x2 x3+– 19=
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algorithm is made by setting the NonlEqnAlgorithm option to 'dogleg' 
(default), 'lm', or 'gn'.

The default line search algorithm for the Levenberg-Marquardt and 
Gauss-Newton methods, i.e., the LineSearchType option set to 'quadcubic', is 
a safeguarded mixed quadratic and cubic polynomial interpolation and 
extrapolation method. A safeguarded cubic polynomial method can be selected 
by setting LineSearchType to 'cubicpoly'. This method generally requires 
fewer function evaluations but more gradient evaluations. Thus, if gradients 
are being supplied and can be calculated inexpensively, the cubic polynomial 
line search method is preferable. The algorithms used are described fully in the 
“Standard Algorithms” chapter.

Diagnostics Medium and Large-Scale Optimization. fsolve may converge to a nonzero point and 
give this message:

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

In this case, run fsolve again with other starting values.

Medium-Scale Optimization. For the trust region dogleg method, fsolve stops if 
the step size becomes too small and it can make no more progress. fsolve gives 
this message:

The optimization algorithm can make no further progress:
 Trust region radius less than 10*eps

In this case, run fsolve again with other starting values.

Limitations The function to be solved must be continuous. When successful, fsolve only 
gives one root. fsolve may converge to a nonzero point, in which case, try other 
starting values.

fsolve only handles real variables. When x has complex variables, the 
variables must be split into real and imaginary parts.

Large-Scale Optimization. The preconditioner computation used in the 
preconditioned conjugate gradient part of the large-scale method forms JTJ 
(where J is the Jacobian matrix) before computing the preconditioner; 
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therefore, a row of J with many nonzeros, which results in a nearly dense 
product JTJ, might lead to a costly solution process for large problems.

Medium-Scale Optimization. The default trust region dogleg method can only be 
used when the system of equations is square, i.e., the number of equations 
equals the number of unknowns. For the Levenberg-Marquardt and 
Gauss-Newton methods, the system of equations need not be square.

See Also @ (function_handle), \, lsqcurvefit, lsqnonlin, optimset, anonymous 
functions

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear 
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp. 
418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton 
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,” 
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in Numerical 
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in 
Least-Squares,” Quarterly Applied Mathematics 2, pp. 164-168, 1944.

[5] Marquardt, D., “An Algorithm for Least-squares Estimation of Nonlinear 
Parameters,” SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963. 

[6] Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation and 
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 
630, Springer Verlag, pp. 105-116, 1977.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, 
Argonne National Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., “A Fortran Subroutine for Solving Systems of Nonlinear 
Algebraic Equations,” Numerical Methods for Nonlinear Algebraic Equations, 
P. Rabinowitz, ed., Ch.7, 1970.
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5fzeroPurpose Zero of a continuous function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar. The 
value x returned by fzero is near a point where fun changes sign, or NaN if the 
search fails. In this case, the search terminates when the search interval is 
expanded until an Inf, NaN, or complex value is found. 

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign 
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not 
true. Calling fzero with such an interval guarantees that fzero returns a 
value near a point where fun changes sign.

Note  Calling fzero with an interval (x0 with two elements) is often faster 
than calling it with a scalar x0.

x = fzero(fun,x0,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,fval] = fzero(...) returns the value of the objective function fun at the 
solution x.

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes 
the exit condition.

[x,fval,exitflag,output] = fzero(...) returns a structure output that 
contains information about the optimization.

Note  For the purposes of this command, zeros are considered to be points 
where the function actually crosses —  not just touches — the x-axis.
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“Avoiding Global Variables via Anonymous and Nested Functions” on 
page 2-19 explains how to parameterize the objective function fun, if 
necessary.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to fzero. This section provides function-specific details for fun and 
options:

fun The function whose zero is to be computed. fun is a function that 
accepts a vector x and returns a scalar f, the objective function 
evaluated at x. The function fun can be specified as a function 
handle for an M-file function

x = fzero(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fzero(@(x)sin(x*x),x0);

options Optimization options. You can set or change the values of these 
options using the optimset function. fzero uses these options 
structure fields:

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' displays 
just the final output; 'notify' (default) displays 
output only if the function does not converge.

FunValCheck Check whether objective function values are valid. 
'on' displays a warning when the objective 
function returns a value that is complex or NaN. 
'off' (the default) displays no warning.

OutputFcn Specify a user-defined function that the 
optimization function calls at each iteration.

TolX Termination tolerance on x.
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by fzero. This section provides function-specific details for exitflag 
and output:

Examples Calculate  by finding the zero of the sine function near 3.

x = fzero(@sin,3)
x =
    3.1416

To find the zero of cosine between 1 and 2, enter

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

-1 Algorithm was terminated by the output 
function.

-3 NaN or Inf function value was encountered 
during search for an interval containing a 
sign change.

-4 Complex function value was encountered 
during search for an interval containing a 
sign change.

-5 Algorithm might have converged to a 
singular point.

output Structure containing information about the optimization. The 
fields of the structure are

algorithm Algorithm used

funcCount Number of function evaluations

intervaliterations Number of iterations taken to find an 
interval

iterations Number of zero-finding iterations

message Exit message

π
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x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

To find a zero of the function

write an M-file called f.m.

function y = f(x)
y = x.^3-2*x-5;

To find the zero near 2, enter

z = fzero(@f,2)
z =
    2.0946

Since this function is a polynomial, the statement roots([1 0 -2 -5]) finds 
the same real zero, and a complex conjugate pair of zeros.

    2.0946
   -1.0473 + 1.1359i
   -1.0473 - 1.1359i

If fun is parameterized, you can use anonymous functions to capture the 
problem-dependent parameters. For example, suppose you want to minimize 
the objective function myfun defined by the following M-file function.

function f = myfun(x,a)
f = cos(a*x);

Note that myfun has an extra parameter a, so you cannot pass it directly to 
fzero. To optimize for a specific value of a, such as a = 2.

1 Assign the value to a. 
a = 2; % define parameter first

2 Call fzero with a one-argument anonymous function that captures that 
value of a and calls myfun with two arguments:
x = fzero(@(x) myfun(x,a),0.1)

f x( ) x3 2x– 5–=
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Algorithm The fzero command is an M-file. The algorithm, which was originated by 
T. Dekker, uses a combination of bisection, secant, and inverse quadratic 
interpolation methods. An Algol 60 version, with some improvements, is given 
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

Limitations The fzero command finds a point where the function changes sign. If the 
function is continuous, this is also a point where the function has a value near 
zero. If the function is not continuous, fzero may return values that are 
discontinuous points instead of zeros. For example, fzero(@tan,1) returns 
1.5708, a discontinuous point in tan.

Furthermore, the fzero command defines a zero as a point where the function 
crosses the x-axis. Points where the function touches, but does not cross, the 
x-axis are not valid zeros. For example, y = x.^2 is a parabola that touches the 
x-axis at 0. Since the function never crosses the x-axis, however, no zero is 
found. For functions with no valid zeros, fzero executes until Inf, NaN, or a 
complex value is detected.

See Also @ (function_handle), \, fminbnd, fsolve, optimset, roots, anonymous 
functions

References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for 
Mathematical Computations, Prentice-Hall, 1976.
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5fzmultPurpose Multiplication with fundamental nullspace basis

Syntax W = fzmult(A,V)
W = fzmult(A,V,'transpose')
[W,L,U,pcol,P]  = fzmult(A,V)
W = fzmult(A,V,TRANSPOSE,L,U,pcol,P)

Description W = fzmult(A,V) computes the product W of matrix Z with matrix V, that is, 
W = Z*V, where Z is a fundamental basis for the nullspace of matrix A. A must 
be a sparse m-by-n matrix where m < n, rank(A) = m, and 
rank(A(1:m,1:m)) = m.  V must be p-by-q, where p = n-m. If V is sparse W is 
sparse, else W is full.

W = fzmult(A,V,'transpose') computes the product of the transpose of the 
fundamental basis times V, that is, W = Z'*V. V must be p-by-q, where q = n-m. 
fzmult(A,V) is the same as fzmult(A,V,[]).

[W,L,U,pcol,P] = fzmult(A,V) returns the sparse LU-factorization of 
matrix A(1:m,1:m), that is, A1 = A(1:m,1:m) and P*A1(:,pcol) = L*U.

W = fzmult(A,V,transpose,L,U,pcol,P) uses the precomputed sparse LU 
factorization of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m) and 
P*A1(:,pcol) = L*U. transpose is either 'transpose' or [].

The nullspace basis matrix Z is not formed explicitly. An implicit 
representation is used based on the sparse LU factorization of A(1:m,1:m).
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5gangstrPurpose Zero out “small” entries subject to structural rank

Syntax A = gangstr(M,tol)

Description A = gangstr(M,tol) creates matrix A of full structural rank such that A is M 
except that elements of M that are relatively “small,” based on tol, are zeros in 
A. The algorithm decreases tol, if needed, until sprank(A) = sprank(M). M 
must have at least as many columns as rows. Default tol is 1e-2.

gangstr identifies elements of M that are relatively less than tol by first 
normalizing all the rows of M to have norm 1. It then examines nonzeros in M in 
a columnwise fashion, replacing with zeros those elements with values of 
magnitude less than tol*(maximum absolute value in that column).

See Also sprank, spy
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5linprogPurpose Solve a linear programming problem

where f, x, b, beq, lb, and ub are vectors and A and Aeq are matrices.

Syntax x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Description linprog solves linear programming problems.

x = linprog(f,A,b) solves min f'*x such that A*x <= b.

x = linprog(f,A,b,Aeq,beq) solves the problem above while additionally 
satisfying the equality constraints Aeq*x = beq. Set A=[] and b=[] if no 
inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds 
on the design variables, x, so that the solution is always in the range 
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This 
option is only available with the medium-scale algorithm (the LargeScale 
option is set to 'off' using optimset). The default large-scale algorithm and 
the simplex algorithm ignore any starting point.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the 
optimization options specified in the structure options. Use optimset to set 
these options. 

fTx
x

min such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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[x,fval] = linprog(...) returns the value of the objective function fun at 
the solution x: fval = f'*x.

[x,lambda,exitflag] = linprog(...) returns a value exitflag that 
describes the exit condition.

[x,lambda,exitflag,output] = linprog(...) returns a structure output 
that contains information about the optimization.

[x,fval,exitflag,output,lambda] = linprog(...) returns a structure 
lambda whose fields contain the Lagrange multipliers at the solution x.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to linprog. “Options” on page 5-127 provides the function-specific 
details for the options values.

Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by linprog. This section provides function-specific details for 
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded options.MaxIter.

-2 No feasible point was found.

-3 Problem is unbounded.

-4 NaN value was encountered during execution of the 
algorithm.

-5 Both primal and dual problems are infeasible.

-7 Search direction became too small. No further 
progress could be made.

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields of the structure are:

lower Lower bounds lb
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Options Optimization options used by linprog. Some options apply to all algorithms, 
and others are only relevant when using the large-scale algorithm.You can use 
optimset to set or change the values of these fields in the options structure, 
options. See “Optimization Options” on page 5-9, for detailed information.:

Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the optimization. The 
fields of the structure are:

algorithm Algorithm used

cgiterations The number of conjugate gradient iterations 
(large-scale algorithm only).

iterations Number of iterations 

message Exit message

LargeScale  Use large-scale algorithm when set to 'on'. Use 
medium-scale algorithm when set to 'off'.

Diagnostics Print diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' displays 
output at each iteration; 'final' (default) displays just the 
final output. At this time, the 'iter' level only works with 
the large-scale algorithm.

MaxIter Maximum number of iterations allowed.
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Medium-Scale ALgorithm Only. These options are used by the medium-scale 
algorithm:

Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

Examples Find x that minimizes 

subject to

First, enter the coefficients

f = [-5; -4; -6]
A = [1 -1  1
     3  2  4
      3  2  0];
b = [20; 42; 30];
lb = zeros(3,1);

Next, call a linear programming routine.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

Entering x, lambda.ineqlin, and lambda.lower gets

x = 

Simplex If 'on', linprog uses the simplex algorithm. The simplex 
algorithm uses a built-in starting point, ignoring the starting 
point x0 if supplied. The default is 'off'. See “Simplex 
Algorithm” on page 3-36 for more information and an 
example.

TolFun Termination tolerance on the function value.

f x( ) 5x1 4x2– 6x3––=

x1 x2 x3+– 20≤

3x1 2x2 4x3+ + 42≤

3x1 2x2+ 30≤

0 x1≤ 0 x2≤ 0 x3≤,,
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0.0000
15.0000
3.0000

lambda.ineqlin =
0
1.5000
0.5000

lambda.lower =
1.0000
0
0

Nonzero elements of the vectors in the fields of lambda indicate active 
constraints at the solution. In this case, the second and third inequality 
constraints (in lambda.ineqlin) and the first lower bound constraint (in 
lambda.lower) are active constraints (i.e., the solution is on their constraint 
boundaries).

Algorithm Large-Scale Optimization. The large-scale method is based on LIPSOL (Linear 
Interior Point Solver, [3]), which is a variant of Mehrotra’s predictor-corrector 
algorithm ([2]), a primal-dual interior-point method. A number of 
preprocessing steps occur before the algorithm begins to iterate. See 
“Large-Scale Linear Programming” on page 4-13.

Medium-Scale Optimization. linprog uses a projection method as used in the 
quadprog algorithm. linprog is an active set method and is thus a variation of 
the well-known simplex method for linear programming [1]. The algorithm 
finds an initial feasible solution by first solving another linear programming 
problem.

Alternatively, you can use the simplex algorithm, described in “Simplex 
Algorithm” on page 3-36, by entering

options = optimset('LargeScale , 'off', 'Simplex', 'on')

and passing options as an input argument to linprog. The simplex algorithm 
returns a vertex optimal solution.
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Note  You cannot supply an initial point x0 for linprog with either the 
large-scale method or the medium-scale method using the simplex algorithm. 
In either case, if you pass in x0 as an input argument, linprog ignores x0 and 
computes its own initial point for the algorithm.

Diagnostics Large-Scale Optimization. The first stage of the algorithm might involve some 
preprocessing of the constraints (see “Large-Scale Linear Programming” on 
page 4-13). Several possible conditions might occur that cause linprog to exit 
with an infeasibility message. In each case, the exitflag argument returned 
by linprog is set to a negative value to indicate failure.

If a row of all zeros is detected in Aeq but the corresponding element of beq is 
not zero, the exit message is

Exiting due to infeasibility:   An all zero row in the constraint 
matrix does not have a zero in corresponding right-hand size 
entry.

If one of the elements of x is found not to be bounded below, the exit message is

Exiting due to infeasibility:   Objective f'*x is unbounded below.

If one of the rows of Aeq has only one nonzero element, the associated value in 
x is called a singleton variable. In this case, the value of that component of x 
can be computed from Aeq and beq. If the value computed violates another 
constraint, the exit message is

Exiting due to infeasibility: Singleton variables in equality 
constraints are not feasible.

If the singleton variable can be solved for but the solution violates the upper or 
lower bounds, the exit message is

Exiting due to infeasibility: Singleton variables in the equality 
constraints are not within bounds.
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Note  The preprocessing steps are cumulative. For example, even if your 
constraint matrix does not have a row of all zeros to begin with, other 
preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part of the algorithm begins 
until the stopping criteria are met. (See “Large-Scale Linear Programming” on 
page 4-13 for more information about residuals, the primal problem, the dual 
problem, and the related stopping criteria.) If the residuals are growing instead 
of getting smaller, or the residuals are neither growing nor shrinking, one of 
the two following termination messages is displayed, respectively,

One or more of the residuals, duality gap, or total relative error 
has grown 100000 times greater than its minimum value so far:

or

One or more of the residuals, duality gap, or total relative error 
has stalled:

After one of these messages is displayed, it is followed by one of the following 
six messages indicating that the dual, the primal, or both appear to be 
infeasible. The messages differ according to how the infeasibility or 
unboundedness was measured.

The dual appears to be infeasible (and the primal unbounded).(The 
primal residual < TolFun.)

The primal appears to be infeasible (and the dual unbounded). (The 
dual residual < TolFun.)

The dual appears to be infeasible (and the primal unbounded) since 
the dual residual > sqrt(TolFun).(The primal residual < 
10*TolFun.)

The primal appears to be infeasible (and the dual unbounded) since 
the primal residual > sqrt(TolFun).(The dual residual < 
10*TolFun.)

The dual appears to be infeasible and the primal unbounded since 
the primal objective < -1e+10 and the dual objective < 1e+6.
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The primal appears to be infeasible and the dual unbounded since 
the dual objective > 1e+10 and the primal objective > -1e+6.

Both the primal and the dual appear to be infeasible.

Note that, for example, the primal (objective) can be unbounded and the primal 
residual, which is a measure of primal constraint satisfaction, can be small.

Medium-Scale Optimization. linprog gives a warning when the problem is 
infeasible.

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, linprog produces a result that minimizes the worst case 
constraint violation.

When the equality constraints are inconsistent, linprog gives

Warning: The equality constraints are overly
stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, linprog returns a value of x that satisfies the constraints.

Limitations Medium-Scale Optimization. At this time, the only levels of display, using the 
Display option in options, are 'off' and 'final'; iterative output using 
'iter' is not available.

See Also quadprog

References [1] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method for 
Minimizing a Linear from Under Linear Inequality Constraints,” Pacific 
Journal Math., Vol. 5, pp. 183-195.

[2] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point 
Method,” SIAM Journal on Optimization, Vol. 2, pp. 575-601, 1992.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods 
Under the MATLAB Environment,” Technical Report TR96-01, Department of 
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Mathematics and Statistics, University of Maryland, Baltimore County, 
Baltimore, MD, July 1995.
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5lsqcurvefitPurpose Solve nonlinear curve-fitting (data-fitting) problems in the least-squares sense. 
That is, given input data xdata, and the observed output ydata, find coefficients 
x that best fit the equation

where xdata and ydata are vectors of length m and F(x, xdata) is a 
vector-valued function.

The function lsqcurvefit uses the same algorithm as lsqnonlin. Its purpose 
is to provide an interface designed specifically for data-fitting problems.

Syntax x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqcurvefit(...)

Description lsqcurvefit solves nonlinear data-fitting problems. lsqcurvefit requires a 
user-defined function to compute the vector-valued function F(x, xdata). The 
size of the vector returned by the user-defined function must be the same as the 
size of the vectors ydata and xdata.

x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds coefficients x 
to best fit the nonlinear function fun(x,xdata) to the data ydata (in the 
least-squares sense). ydata must be the same size as the vector (or matrix) F 
returned by fun.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower and 
upper bounds on the design variables in x so that the solution is always in the 
range lb <= x <= ub.

min
x

1
2
--- F x xdata,( ) ydata– 2

2 1
2
--- F x xdatai,( ) ydatai–( )2

i 1=

m

∑=
5-134



lsqcurvefit
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes with the 
optimization options specified in the structure options. Use optimset to set 
these options. Pass empty matrices for lb and ub if no bounds exist.

[x,resnorm] = lsqcurvefit(...) returns the value of the squared 2-norm of 
the residual at x: sum{(fun(x,xdata)-ydata).^2}.

[x,resnorm,residual] = lsqcurvefit(...) returns the value of the 
residual fun(x,xdata)-ydata at the solution x.

[x,resnorm,residual,exitflag] = lsqcurvefit(...) returns a value 
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqcurvefit(...) returns a 
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
returns a structure lambda whose fields contain the Lagrange multipliers at 
the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = 
lsqcurvefit(...) returns the Jacobian of fun at the solution x.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to lsqcurvefit. This section provides function-specific details for fun 
and options:
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fun The function you want to fit. fun is a function that takes a vector x 
and returns a vector F, the objective functions evaluated at x. The 
function fun can be specified as a function handle for an M-file 
function

x = lsqcurvefit(@myfun,x0,xdata,ydata)

where myfun is a MATLAB function such as

function F = myfun(x,xdata)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata),...
           'x','xdata';
x = lsqcurvefit(f,x0,xdata,ydata);

Note  fun should return fun(x,xdata), and not the 
sum-of-squares sum((fun(x,xdata)-ydata).^2). The algorithm 
implicitly squares and sums fun(x,xdata)-ydata.

If the Jacobian can also be computed and the Jacobian option is 
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument, 
the Jacobian value J, a matrix, at x. Note that by checking the 
value of nargout the function can avoid computing J when fun is 
called with only one output argument (in the case where the 
optimization algorithm only needs the value of F but not J).

function [F,J] = myfun(x,xdata)
F = ... % objective function values at x
if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x
end
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by lsqcurvefit. This section provides function-specific details for 
exitflag, lambda, and output:

If fun returns a vector (matrix) of m components and x has length 
n, where n is the length of x0, then the Jacobian J is an m-by-n 
matrix where J(i,j) is the partial derivative of F(i) with respect 
to x(j). (Note that the Jacobian J is the transpose of the gradient 
of F.)

options “Options” on page 5-138 provides the function-specific details for 
the options values.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

2 Change in x was less than the specified tolerance. 

3 Change in the residual was less than the 
specified tolerance. 

4 Magnitude of search direction smaller than the 
specified tolerance

0 Number of iterations exceeded options.MaxIter 
or number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output 
function.

-2 Problem is infeasible: the bounds lb and ub are 
inconsistent. 

-4 Optimization could not make further progress.

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields of the structure are

lower Lower bounds lb
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Note  The sum of squares should not be formed explicitly. Instead, your 
function should return a vector of function values. See the examples below.

Options Optimization options used by lsqcurvefit. Some options apply to all 
algorithms, some are only relevant when using the large-scale algorithm, and 
others are only relevant when you are using the medium-scale algorithm.You 
can use optimset to set or change the values of these fields in the options 
structure options. See “Optimization Options” on page 5-9, for detailed 
information. 

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference, because certain conditions must be met to use the large-scale 
or medium-scale algorithm. For the large-scale algorithm, the nonlinear 
system of equations cannot be underdetermined; that is, the number of 

upper Upper bounds ub

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Algorithm used

cgiterations The number of PCG iterations (large-scale 
algorithm only)

stepsize The final step size taken (medium-scale 
algorithm only)

firstorderopt Measure of first-order optimality (large-scale 
algorithm only)

For large-scale bound constrained problems, the 
first-order optimality is the infinity norm of v.*g, 
where v is defined as in “Box Constraints” on 
page 4-7, and g is the gradient g = JTF (see 
“Nonlinear Least-Squares” on page 4-10).
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equations (the number of elements of F returned by fun) must be at least as 
many as the length of x. Furthermore, only the large-scale algorithm handles 
bound constraints:

Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'.

DerivativeCheck Compare user-supplied derivatives (Jacobian) to 
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

Jacobian If 'on', lsqcurvefit uses a user-defined Jacobian 
(defined in fun), or Jacobian information (when using 
JacobMult), for the objective function. If 'off', 
lsqcurvefit approximates the Jacobian using finite 
differences.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.
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JacobMult Function handle for Jacobian multiply function. For 
large-scale structured problems, this function 
computes the Jacobian matrix product J*Y,  J'*Y, or 
J'*(J*Y) without actually forming J. The function is of 
the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters p1,p2,... 
contain the matrices used to compute J*Y (or J'*Y, or 
J'*(J*Y)). The first argument Jinfo must be the same 
as the second argument returned by the objective 
function fun, for example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as 
there are dimensions in the problem. flag determines 
which product to compute:

• If flag == 0 then W = J'*(J*Y). 

• If flag > 0 then W = J*Y. 

• If flag < 0 then W = J'*Y.  

In each case, J is not formed explicitly. fsolve uses 
Jinfo to compute the preconditioner. The optional 
parameters p1, p2, ... can be any additional parameters 
needed by jmfun. See “Avoiding Global Variables via 
Anonymous and Nested Functions” on page 2-19 for 
information on how to supply values for these 
parameters.

Note  'Jacobian' must be set to 'on' for Jinfo to be 
passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for a similar example.
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Medium-Scale Algorithm Only. These options are used only by the medium-scale 
algorithm:

Examples Given vectors of data xdata and ydata, suppose you want to find coefficients x 
to find the best fit to the equation

That is, you want to minimize

JacobPattern Sparsity pattern of the Jacobian for finite differencing. 
If it is not convenient to compute the Jacobian matrix J 
in fun, lsqcurvefit can approximate J via sparse 
finite differences, provided the structure of J, i.e., 
locations of the nonzeros, is supplied as the value for 
JacobPattern. In the worst case, if the structure is 
unknown, you can set JacobPattern to be a dense 
matrix and a full finite-difference approximation is 
computed in each iteration (this is the default if 
JacobPattern is not set). This can be very expensive 
for large problems, so it is usually worth the effort to 
determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate 
gradient) iterations (see “Algorithm” on page 5-142).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By 
default, diagonal preconditioning is used (upper 
bandwidth of 0). For some problems, increasing the 
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration. 

DiffMaxChange Maximum change in variables for finite differencing.

DiffMinChange Minimum change in variables for finite differencing.

LevenbergMarquardt Choose Levenberg-Marquardt over Gauss-Newton 
algorithm.

LineSearchType Line search algorithm choice.

ydata i( ) x 1( ) xdata i( )2⋅ x 2( ) xdata i( )( )sin⋅ x 3( ) xdata i( )3⋅+ +=
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where m is the length of xdata and ydata, the function F is defined by

F(x,xdata) = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3

and the starting point is x0 = [10, 10, 10].

First, write an M-file to return the value of F (F has n components).

function F = myfun(x,xdata)
F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3;

Next, invoke an optimization routine:

% Assume you determined xdata and ydata experimentally
xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];

x0 = [10, 10, 10]  % Starting guess
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

Note that at the time that lsqcurvefit is called, xdata and ydata are assumed 
to exist and are vectors of the same size. They must be the same size because 
the value F returned by fun must be the same size as ydata.

After 33 function evaluations, this example gives the solution

x = 
0.2269    0.3385    0.3021
% residual or sum of squares
resnorm = 

6.2950

The residual is not zero because in this case there was some noise 
(experimental error) in the data.

Algorithm Large-Scale Optimization. By default lsqcurvefit chooses the large-scale 
algorithm. This algorithm is a subspace trust region method and is based on 
the interior-reflective Newton method described in [1], [2]. Each iteration 
involves the approximate solution of a large linear system using the method of 

 
x

min 1
2
--- F x xdatai,( ) ydatai–( )2

i 1=

m

∑
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preconditioned conjugate gradients (PCG). See “Trust-Region Methods for 
Nonlinear Minimization” on page 4-2 and “Preconditioned Conjugate 
Gradients” on page 4-5.

Medium-Scale Optimization. lsqcurvefit, with the LargeScale option set to 
'off' with optimset, uses the Levenberg-Marquardt method with line-search 
[4], [5], [6]. Alternatively, a Gauss-Newton method [3] with line-search may be 
selected. You can choose the algorithm by setting the LevenbergMarquardt 
option with optimset. Setting LevenbergMarquardt to 'off' (and LargeScale 
to 'off') selects the Gauss-Newton method, which is generally faster when the 
residual  is small.

The default line search algorithm, i.e., LineSearchType option set to 
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial 
interpolation and extrapolation method. You can select a safeguarded cubic 
polynomial method by setting LineSearchType to 'cubicpoly'. This method 
generally requires fewer function evaluations but more gradient evaluations. 
Thus, if gradients are being supplied and can be calculated inexpensively, the 
cubic polynomial line search method is preferable. The algorithms used are 
described fully in the “Standard Algorithms” chapter.

Diagnostics Large-Scale Optimization. The large-scale method does not allow equal upper and 
lower bounds. For example, if lb(2)==ub(2), lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqcurvefit does not handle equality constraints, which is another way to 
formulate equal bounds. If equality constraints are present, use fmincon, 
fminimax, or fgoalattain for alternative formulations where equality 
constraints can be included.)

Limitations The function to be minimized must be continuous. lsqcurvefit might only give 
local solutions.

lsqcurvefit only handles real variables (the user-defined function must only 
return real values). When x has complex variables, the variables must be split 
into real and imaginary parts.

Large-Scale Optimization. The large-scale algorithm for lsqcurvefit does not 
solve underdetermined systems; it requires that the number of equations, i.e., 

F x( ) 2
2
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the row dimension of F, be at least as great as the number of variables. In the 
underdetermined case, the medium-scale algorithm is used instead. See 
Table 2-4, Large-Scale Problem Coverage and Requirements, on page 2-42, for 
more information on what problem formulations are covered and what 
information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient 
part of the large-scale method forms JTJ (where J is the Jacobian matrix) 
before computing the preconditioner; therefore, a row of J with many nonzeros, 
which results in a nearly dense product JTJ, can lead to a costly solution 
process for large problems.

If components of x have no upper (or lower) bounds, then lsqcurvefit prefers 
that the corresponding components of ub (or lb) be set to inf (or -inf for lower 
bounds) as opposed to an arbitrary but very large positive (or negative for lower 
bounds) number.

Medium-Scale Optimization. The medium-scale algorithm does not handle bound 
constraints. 

Since the large-scale algorithm does not handle under-determined systems and 
the medium-scale does not handle bound constraints, problems with both these 
characteristics cannot be solved by lsqcurvefit. 

See Also @ (function_handle), \, lsqlin, lsqnonlin, lsqnonneg, optimset
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5lsqlinPurpose Solve the constrained linear least-squares problem

where C, A, and Aeq are matrices and d, b, beq, lb, ub, and x are vectors.

Syntax x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)

Description x = lsqlin(C,d,A,b) solves the linear system C*x=d in the least-squares 
sense subject to A*x<=b, where C is m-by-n.

x = lsqlin(C,d,A,b,Aeq,beq) solves the preceding problem while 
additionally satisfying the equality constraints Aeq*x = beq. Set A=[] and 
b=[] if no inequalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds 
on the design variables in x so that the solution is always in the range 
lb <= x <= ub. Set Aeq=[] and beq=[] if no equalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. Set 
lb=[] and b=[] if no bounds exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the 
optimization options specified in the structure options. Use optimset to set 
these options. 

1
2
--- Cx d–

2

x
min 2 such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
5-146



lsqlin
[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm of the 
residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqlin(...) returns the residual C*x-d.

[x,resnorm,residual,exitflag] = lsqlin(...) returns a value exitflag 
that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqlin(...) returns a 
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...) returns a 
structure lambda whose fields contain the Lagrange multipliers at the solution 
x.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to lsqlin. “Options” on page 5-148 provides the options values 
specific to lsqlin.

Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by lsqlin. This section provides function-specific details for 
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

3 Change in the residual was smaller than the 
specified tolerance

0 Number of iterations exceeded 
options.MaxIter.

-2 The problem is infeasible.

-4 Ill-conditioning prevents further optimization.

-7 Magnitude of search direction became too small. 
No further progress could be made.
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Options Optimization options used by lsqlin. You can set or change the values of these 
options using the optimset function. Some options apply to all algorithms, 
some are only relevant when you are using the large-scale algorithm, and 
others are only relevant when using the medium-scale algorithm. 
See“Optimization Options” on page 5-9 for detailed information. 

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference, because certain conditions must be met to use the large-scale 
algorithm. For lsqlin, when the problem has only upper and lower bounds, 
i.e., no linear inequalities or equalities are specified, the default algorithm is 
the large-scale method. Otherwise the medium-scale algorithm is used:

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the optimization. The 
fields are

iterations Number of iterations taken

algorithm Algorithm used

cgiterations Number of PCG iterations (large-scale algorithm 
only)

firstorderopt Measure of first-order optimality (large-scale 
algorithm only)

For large-scale bound constrained problems, the 
first-order optimality is the infinity norm of 
v.*g, where v is defined as in “Box Constraints” 
on page 4-7, and g is the gradient 
g = CTCx + CTd (see “Nonlinear Least-Squares” 
on page 4-10).
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Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'.

Diagnostics Display diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

MaxIter Maximum number of iterations allowed.

TypicalX Typical x values.
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• JacobMult Function handle for Jacobian multiply function. For 
large-scale structured problems, this function computes 
the Jacobian matrix product J*Y,  J'*Y, or J'*(J*Y) 
without actually forming J. The function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters p1,p2,... 
contain the matrices used to compute J*Y (or J'*Y, or 
J'*(J*Y)). The first argument Jinfo must be the same 
as the second argument returned by the objective 
function fun, for example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there 
are dimensions in the problem. flag determines which 
product to compute:

• If flag == 0 then W = J'*(J*Y). 

• If flag > 0 then W = J*Y. 

If flag < 0 then W = J'*Y.  
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In each case, J is not formed explicitly. fsolve uses 
Jinfo to compute the preconditioner. The optional 
parameters p1, p2, ... can be any additional parameters 
needed by jmfun. See “Avoiding Global Variables via 
Anonymous and Nested Functions” on page 2-19 for 
information on how to supply values for these 
parameters.

Note  'Jacobian' must be set to 'on' for Jinfo to be 
passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for a similar example.

MaxPCGIter where Jinfo and the additional parameters p1,p2,... 
contain the matrices used to compute J*Y (or J'*Y, or 
J'*(J*Y)). The first argument Jinfo must be the same 
as the second argument returned by the objective 
function fun.

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there 
are dimensions in the problem. flag determines which 
product to compute:

• If flag == 0 then W = J'*(J*Y). 

• If flag > 0 then W = J*Y. 

• If flag < 0 then W = J'*Y.  
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Examples Find the least-squares solution to the overdetermined system  subject 
to  and .

First, enter the coefficient matrices and the lower and upper bounds.

C = [
    0.9501    0.7620    0.6153    0.4057
    0.2311    0.4564    0.7919    0.9354
    0.6068    0.0185    0.9218    0.9169
    0.4859    0.8214    0.7382    0.4102
    0.8912    0.4447    0.1762    0.8936];
d = [
    0.0578
    0.3528
    0.8131

In each case, J is not formed explicitly. fsolve uses 
Jinfo to compute the preconditioner. The optional 
parameters p1, p2, ... can be any additional parameters 
needed by jmfun. See “Avoiding Global Variables via 
Anonymous and Nested Functions” on page 2-19 for 
information on how to supply values for these 
parameters.

Note  'Jacobian' must be set to 'on' for Jinfo to be 
passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for a similar example.

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, 
diagonal preconditioning is used (upper bandwidth of 0). 
For some problems, increasing the bandwidth reduces 
the number of PCG iterations.

TolFun Termination tolerance on the function value.

TolPCG Termination tolerance on the PCG iteration.

C x⋅ d=
A x⋅ b≤ lb x≤ ub≤
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    0.0098
    0.1388];
A =[ 
    0.2027    0.2721    0.7467    0.4659
    0.1987    0.1988    0.4450    0.4186
    0.6037    0.0152    0.9318    0.8462];
b =[
    0.5251
    0.2026
    0.6721];
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

Next, call the constrained linear least-squares routine.

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqlin(C,d,A,b,[ ],[ ],lb,ub);

Entering x, lambda.ineqlin, lambda.lower, lambda.upper produces

x =
   -0.1000
   -0.1000

0.2152
    0.3502
lambda.ineqlin =

0
0.2392

         0
lambda.lower =

0.0409
    0.2784

0
         0
lambda.upper =
         0
         0
         0
         0

Nonzero elements of the vectors in the fields of lambda indicate active 
constraints at the solution. In this case, the second inequality constraint (in 
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lambda.ineqlin) and the first lower and second lower bound constraints (in 
lambda.lower) are active constraints (i.e., the solution is on their constraint 
boundaries).

Notes For problems with no constraints, use \. For example, x= A\b.

Because the problem being solved is always convex, lsqlin will find a global, 
although not necessarily unique, solution.

Better numerical results are likely if you specify equalities explicitly, using Aeq 
and beq, instead of implicitly, using lb and ub.

Large-Scale Optimization. If x0 is not strictly feasible, lsqlin chooses a new 
strictly feasible (centered) starting point.

If components of x have no upper (or lower) bounds, set the corresponding 
components of ub (or lb) to Inf (or -Inf for lb) as opposed to an arbitrary but 
very large positive (or negative in the case of lower bounds) number.

Algorithm Large-Scale Optimization. When the problem given to lsqlin has only upper and 
lower bounds; i.e., no linear inequalities or equalities are specified, and the 
matrix C has at least as many rows as columns, the default algorithm is the 
large-scale method. This method is a subspace trust region method based on 
the interior-reflective Newton method described in [1]. Each iteration involves 
the approximate solution of a large linear system using the method of 
preconditioned conjugate gradients (PCG). See “Trust-Region Methods for 
Nonlinear Minimization” on page 4-2 and “Preconditioned Conjugate 
Gradients” on page 4-5. 

Medium-Scale Optimization. lsqlin, with the LargeScale option set to 'off' with 
optimset, or when linear inequalities or equalities are given, is based on 
quadprog, which uses an active set method similar to that described in [2]. It 
finds an initial feasible solution by first solving a linear programming problem. 
See “Quadratic Programming” on page 4-11 in the “Introduction to Algorithms” 
section.

Diagnostics Large-Scale Optimization. The large-scale method does not allow equal upper and 
lower bounds. For example if lb(2) == ub(2), then lsqlin gives the error

Equal upper and lower bounds not permitted in this large-scale 
method.
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Use equality constraints and the medium-scale method instead.

At this time, you must use the medium-scale algorithm to solve equality 
constrained problems. 

Medium-Scale Optimization. If the matrices C, A, or Aeq are sparse, and the 
problem formulation is not solvable using the large-scale method, lsqlin 
warns that the matrices are converted to full.

Warning: This problem formulation not yet available for sparse 
matrices.
Converting to full to solve.

When a problem is infeasible, lsqlin gives a warning:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, lsqlin produces a result that minimizes the worst case constraint 
violation.

When the equality constraints are inconsistent, lsqlin gives

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Limitations At this time, the only levels of display, using the Display option in options, are 
'off' and 'final'; iterative output using 'iter' is not available.

See Also \, lsqnonneg, quadprog

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a 
Quadratic Function Subject to Bounds on Some of the Variables,” SIAM 
Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.

[2] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, Academic 
Press, London, UK, 1981.
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5lsqnonlinPurpose Solve nonlinear least-squares (nonlinear data-fitting) problem

 

Syntax x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =

lsqnonlin(...)

Description lsqnonlin solves nonlinear least-squares problems, including nonlinear 
data-fitting problems.

Rather than compute the value f(x) (the sum of squares), lsqnonlin requires 
the user-defined function to compute the vector-valued function

Then, in vector terms, you can restate this optimization problem as

where x is a vector and F(x) is a function that returns a vector value.

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum of the sum 
of squares of the functions described in fun. fun should return a vector of 
values and not the sum of squares of the values. (The algorithm implicitly sums 
and squares fun(x).)

min
x

f x( )( ) f1 x( )2 f2 x( )2 f3 x( )2 … fm x( )2+ + + +=

F x( )

f1 x( )

f2 x( )

f3 x( )

=

min
x

1
2
--- F x( ) 2

2 1
2
--- fi x( )2

i
∑=
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x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper bounds on the 
design variables in x, so that the solution is always in the range 
lb <= x <= ub.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the optimization 
options specified in the structure options. Use optimset to set these options. 
Pass empty matrices for lb and ub if no bounds exist.

[x,resnorm] = lsqnonlin(...) returns the value of the squared 2-norm of 
the residual at x: sum(fun(x).^2).

[x,resnorm,residual] = lsqnonlin(...) returns the value of the residual 
fun(x) at the solution x.

[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value 
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqnonlin(...) returns a 
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
returns a structure lambda whose fields contain the Lagrange multipliers at 
the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = 
lsqnonlin(...) returns the Jacobian of fun at the solution x.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to lsqnonlin. This section provides function-specific details for fun 
and options:
5-157



lsqnonlin
fun The function whose sum of squares is minimized. fun is a function 
that accepts a vector x and returns a vector F, the objective 
functions evaluated at x. The function fun can be specified as a 
function handle for an M-file function

x = lsqnonlin(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = lsqnonlin(@(x)sin(x.*x),x0);

If the Jacobian can also be computed and the Jacobian option is 
'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument, 
the Jacobian value J, a matrix, at x. Note that by checking the 
value of nargout the function can avoid computing J when fun is 
called with only one output argument (in the case where the 
optimization algorithm only needs the value of F but not J).

function [F,J] = myfun(x)
F = ... % Objective function values at x
if nargout > 1 % Two output arguments

J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has length 
n, where n is the length of x0, then the Jacobian J is an m-by-n 
matrix where J(i,j) is the partial derivative of F(i) with respect 
to x(j). (Note that the Jacobian J is the transpose of the gradient 
of F.)

options “Options” on page 5-160 provides the function-specific details for 
the options values.
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Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by lsqnonlin. This section provides function-specific details for 
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

2 Change in x was less than the specified tolerance. 

3 Change in the residual was less than the specified 
tolerance. 

4 Magnitude of search direction was smaller than 
the specified tolerance.

0 Number of iterations exceeded options.MaxIter 
or number of function evaluations exceeded 
options.FunEvals.

-1 Algorithm was terminated by the output function.

-2 Problem is infeasible: the bounds lb and ub are 
inconsistent. 

-4 Line search could not sufficiently decrease the 
residual along the current search direction.

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields are

lower Lower bounds lb

upper Upper bounds ub

output Structure containing information about the optimization. The 
fields of the structure are

iterations Number of iterations taken

funcCount The number of function evaluations

algorithm Algorithm used
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Note  The sum of squares should not be formed explicitly. Instead, your 
function should return a vector of function values. See the following example.

Options Optimization options. You can set or change the values of these options using 
the optimset function. Some options apply to all algorithms, some are only 
relevant when you are using the large-scale algorithm, and others are only 
relevant when you are using the medium-scale algorithm. See “Optimization 
Options” on page 5-9 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is 
only a preference because certain conditions must be met to use the large-scale 
or medium-scale algorithm. For the large-scale algorithm, the nonlinear 
system of equations cannot be underdetermined; that is, the number of 
equations (the number of elements of F returned by fun) must be at least as 
many as the length of x. Furthermore, only the large-scale algorithm handles 
bound constraints:

Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

cgiterations Number of PCG iterations (large-scale algorithm 
only)

stepsize The final step size taken (medium-scale algorithm 
only)

firstorderopt Measure of first-order optimality (large-scale 
algorithm only) 

For large-scale bound constrained problems, the 
first-order optimality is the infinity norm of v.*g, 
where v is defined as in “Box Constraints” on 
page 4-7, and g is the gradient g = JTF (see 
“Nonlinear Least-Squares” on page 4-10).

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'.
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Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

DerivativeCheck Compare user-supplied derivatives (Jacobian) to 
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to 
be minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

Jacobian If 'on', lsqnonlin uses a user-defined Jacobian 
(defined in fun), or Jacobian information (when using 
JacobMult), for the objective function. If 'off', 
lsqnonlin approximates the Jacobian using finite 
differences.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.
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JacobMult Function handle for Jacobian multiply function. For 
large-scale structured problems, this function 
computes the Jacobian matrix product J*Y,  J'*Y, or 
J'*(J*Y) without actually forming J. The function is of 
the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters p1,p2,... 
contain the matrices used to compute J*Y (or J'*Y, or 
J'*(J*Y)). The first argument Jinfo must be the same 
as the second argument returned by the objective 
function fun, for example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as 
there are dimensions in the problem. flag determines 
which product to compute:

• If flag == 0 then W = J'*(J*Y). 

• If flag > 0 then W = J*Y. 

• If flag < 0 then W = J'*Y.  

In each case, J is not formed explicitly. fsolve uses 
Jinfo to compute the preconditioner. The optional 
parameters p1, p2, ... can be any additional 
parameters needed by jmfun. See “Avoiding Global 
Variables via Anonymous and Nested Functions” on 
page 2-19 for information on how to supply values for 
these parameters.

Note  'Jacobian' must be set to 'on' for Jinfo to be 
passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for a similar example.
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Medium-Scale Algorithm Only. These options are used only by the medium-scale 
algorithm:

Examples Find x that minimizes

starting at the point x = [0.3, 0.4]. 

JacobPattern Sparsity pattern of the Jacobian for finite differencing. 
If it is not convenient to compute the Jacobian matrix 
J in fun, lsqnonlin can approximate J via sparse 
finite differences, provided the structure of J, i.e., 
locations of the nonzeros, is supplied as the value for 
JacobPattern. In the worst case, if the structure is 
unknown, you can set JacobPattern to be a dense 
matrix and a full finite-difference approximation is 
computed in each iteration (this is the default if 
JacobPattern is not set). This can be very expensive 
for large problems, so it is usually worth the effort to 
determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate 
gradient) iterations (see “Algorithm” on page 5-164).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By 
default, diagonal preconditioning is used (upper 
bandwidth of 0). For some problems, increasing the 
bandwidth reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

DiffMaxChange Maximum change in variables for finite differencing.

DiffMinChange Minimum change in variables for finite differencing.

LevenbergMarquardt Choose Levenberg-Marquardt over Gauss-Newton 
algorithm.

LineSearchType Line search algorithm choice.
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Because lsqnonlin assumes that the sum of squares is not explicitly formed in 
the user function, the function passed to lsqnonlin should instead compute the 
vector-valued function

for  (that is, F should have k components).

First, write an M-file to compute the k-component vector F.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Next, invoke an optimization routine.

x0 = [0.3 0.4]             % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0)  % Invoke optimizer

After about 24 function evaluations, this example gives the solution

x = 
0.2578  0.2578

resnorm % Residual or sum of squares
resnorm = 

124.3622

Algorithm Large-Scale Optimization. By default lsqnonlin chooses the large-scale 
algorithm. This algorithm is a subspace trust region method and is based on 
the interior-reflective Newton method described in [1], [2]. Each iteration 
involves the approximate solution of a large linear system using the method of 
preconditioned conjugate gradients (PCG). See “Trust-Region Methods for 
Nonlinear Minimization” on page 4-2 and “Preconditioned Conjugate 
Gradients” on page 4-5. 

Medium-Scale Optimization. If you set the LargeScale option set to 'off' with 
optimset, lsqnonlin uses the Levenberg-Marquardt method with line search 
[4], [5], [6]. Alternatively, you can select a Gauss-Newton method [3] with line 
search by setting the LevenbergMarquardt option. Setting 
LevenbergMarquardt to 'off' (and LargeScale to 'off') selects the 
Gauss-Newton method, which is generally faster when the residual  is 
small.

Fk x( ) 2 2k e
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The default line search algorithm, i.e., the LineSearchType option set to 
'quadcubic', is a safeguarded mixed quadratic and cubic polynomial 
interpolation and extrapolation method. You can select a safeguarded cubic 
polynomial method by setting the LineSearchType option to 'cubicpoly'. This 
method generally requires fewer function evaluations but more gradient 
evaluations. Thus, if gradients are being supplied and can be calculated 
inexpensively, the cubic polynomial line search method is preferable. The 
algorithms used are described fully in the “Standard Algorithms” chapter.

Diagnostics Large-Scale Optimization. The large-scale method does not allow equal upper and 
lower bounds. For example, if lb(2)==ub(2), lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqnonlin does not handle equality constraints, which is another way to 
formulate equal bounds. If equality constraints are present, use fmincon, 
fminimax, or fgoalattain for alternative formulations where equality 
constraints can be included.)

Limitations The function to be minimized must be continuous. lsqnonlin might only give 
local solutions.

lsqnonlin only handles real variables. When x has complex variables, the 
variables must be split into real and imaginary parts.

Large-Scale Optimization. The large-scale method for lsqnonlin does not solve 
underdetermined systems; it requires that the number of equations (i.e., the 
number of elements of F) be at least as great as the number of variables. In the 
underdetermined case, the medium-scale algorithm is used instead. (If bound 
constraints exist, a warning is issued and the problem is solved with the 
bounds ignored.) See Table 2-4, Large-Scale Problem Coverage and 
Requirements, on page 2-42, for more information on what problem 
formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient 
part of the large-scale method forms JTJ (where J is the Jacobian matrix) 
before computing the preconditioner; therefore, a row of J with many nonzeros, 
which results in a nearly dense product JTJ, can lead to a costly solution 
process for large problems.
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If components of x have no upper (or lower) bounds, then lsqnonlin prefers 
that the corresponding components of ub (or lb) be set to inf (or -inf for lower 
bounds) as opposed to an arbitrary but very large positive (or negative for lower 
bounds) number.

Medium-Scale Optimization. The medium-scale algorithm does not handle bound 
constraints.

Because the large-scale algorithm does not handle underdetermined systems 
and the medium-scale algorithm does not handle bound constraints, problems 
with both these characteristics cannot be solved by lsqnonlin. 

See Also @ (function_handle), lsqcurvefit, lsqlin, optimset

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear 
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp. 
418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton 
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,” 
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J.E., Jr., “Nonlinear Least-Squares,” State of the Art in Numerical 
Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

[4] Levenberg, K.,“A Method for the Solution of Certain Problems in 
Least-Squares,” Quarterly Applied Math. 2, pp. 164-168, 1944.

[5] Marquardt, D.,“An Algorithm for Least-Squares Estimation of Nonlinear 
Parameters,” SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.

[6] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation and 
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 
630, Springer Verlag, pp. 105-116, 1977.
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5lsqnonnegPurpose Solves the nonnegative least-squares problem

where the matrix C and the vector d are the coefficients of the objective 
function. The vector, x, of independent variables is restricted to be 
nonnegative.

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject 
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise, 
the default is used. The default start point is the origin (the default is also used 
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization options 
specified in the structure options. Use optimset to set these options. 

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of 
the residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual C*x-d.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value 
exitflag that describes the exit condition of lsqnonneg.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a 
structure output that contains information about the optimization.

1
2
--- Cx d–

2

x
min 2 such that x 0≥
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[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the Lagrange multipliers in the vector lambda.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to lsqnonneg. This section provides function-specific details for 
options:

Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by lsqnonneg. This section provides function-specific details for 
exitflag, lambda, and output:

Examples Compare the unconstrained least-squares solution to the lsqnonneg solution 
for a 4-by-2 problem.

options Use optimset to set or change the values of these fields in the 
options structure, options. See “Optimization Options” on 
page 5-9, for detailed information. 

Display Level of display. 'off' displays no output; 
'final' displays just the final output; 'notify' 
(default) displays output only if the function does not 
converge.

TolX Termination tolerance on x.

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded options.MaxIter.

lambda Vector containing the Lagrange multipliers: lambda(i)<=0 when 
x(i) is (approximately) 0, and lambda(i) is (approximately) 0 
when x(i)>0.

output Structure containing information about the optimization. The 
fields are

iterations Number of iterations taken

algorithm Algorithm used
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C = [
0.0372    0.2869
0.6861    0.7071
0.6233    0.6245
0.6344    0.6170];

d = [
0.8587
0.1781
0.0747
0.8405];

[C\d, lsqnonneg(C,d)] =
-2.5627  0
3.1108  0.6929

[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

The solution from lsqnonneg does not fit as well as the least-squares solution. 
However, the nonnegative least-squares solution has no negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set 
of possible basis vectors and computes the associated dual vector lambda. It 
then selects the basis vector corresponding to the maximum value in lambda in 
order to swap it out of the basis in exchange for another possible candidate. 
This continues until lambda <= 0.

Notes The nonnegative least-squares problem is a subset of the constrained linear 
least-squares problem. Thus, when C has more rows than columns (i.e., the 
system is overdetermined),

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)

is equivalent to

[m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] = 

lsqlin(C,d,-eye(n,n),zeros(n,1));

except that lambda = -lambda_lsqlin.ineqlin.
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For problems greater than order 20, lsqlin might be faster than lsqnonneg; 
otherwise lsqnonneg is generally more efficient. 

See Also \, lsqlin, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems, 
Prentice-Hall, Chapter 23, p. 161, 1974.
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5optimgetPurpose Get optimization options values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified option 
in the optimization options structure options. You need to type only enough 
leading characters to define the option name uniquely. Case is ignored for 
option names.

val = optimget(options,'param',default) returns default if the specified 
option is not defined in the optimization options structure options. Note that 
this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display option in the structure called 
my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display option in the structure called 
my_options (as in the previous example) except that if the Display option is 
not defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset
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5optimsetPurpose Create or edit optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...) creates an 
optimization options structure called options, in which the specified options 
(param) have specified values. Any unspecified options are set to [] (options 
with value [] indicate to use the default value for that option when you pass 
options to the optimization function). It is sufficient to type only enough 
leading characters to define the option name uniquely. Case is ignored for 
option names.

optimset with no input or output arguments displays a complete list of options 
with their valid values.

options = optimset (with no input arguments) creates an options structure 
options where all fields are set to [].

options = optimset(optimfun) creates an options structure options with all 
option names and default values relevant to the optimization function 
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of 
oldopts, modifying the specified options with the specified values.

options = optimset(oldopts,newopts) combines an existing options 
structure, oldopts, with a new options structure, newopts. Any options in 
newopts with nonempty values overwrite the corresponding old options in 
oldopts.

Options For more information about individual options, see the reference pages for the 
optimization functions that use these options. “Optimization Options” on 
page 5-9 provides descriptions of these options and which functions use them.
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In the following lists, values in { } denote the default value; some options have 
different defaults for different optimization functions and so no values are 
shown in { }.

You can also view the optimization options and defaults by typing optimset at 
the command line.

Optimization options used by both large-scale and medium-scale algorithms:

Optimization options used by large-scale algorithms only:

DerivativeCheck 'on' | {'off'}

Diagnostics 'on' | {'off'}

Display 'off' | 'iter' | 'final' | 'notify'

FunValCheck {'off'} | 'on'

GradObj 'on' | {'off'}

Jacobian 'on' | {'off'}

LargeScale 'on' |'off'. The default for fsolve is 'off'. The 
default for all other functions that provide a large-scale 
algorithm is 'on'.

MaxFunEvals Positive integer

MaxIter Positive integer

OutputFcn Specify a user-defined function that an opimization 
function calls at each iteration. See “Output Function” 
on page 5-15.

TolCon Positive scalar

TolFun Positive scalar

TolX Positive scalar

TypicalX Vector of all ones

Hessian 'on' | {'off'}

HessMult Function | {[]}

HessPattern Sparse matrix |{sparse matrix of all ones}
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Optimization options used by medium-scale algorithms only:

InitialHessMatrix {'identity'} | 'scaled-identity' | 'user-supplied'

InitialHessType scalar | vector | {[]}

JacobMult Function | {[]}

JacobPattern Sparse matrix |{sparse matrix of all ones}

MaxPCGIter Positive integer | {the greater of 1 and floor(n/2))} 
where n is the number of elements in x0, the starting 
point

PrecondBandWidth Positive integer | {0} | Inf

TolPCG Positive scalar | {0.1}

BranchStrategy 'mininfeas' | {'maxinfeas'}

DiffMaxChange Positive scalar | {1e 1}

DiffMinChange Positive scalar | {1e 8}

GoalsExactAchieve Positive scalar integer | {0}

GradConstr 'on' | {'off'}

HessUpdate {'bfgs'} | 'dfp' | 'steepdesc'

LevenbergMarquardt 'on' | {'off'}

LineSearchType 'cubicpoly' | {'quadcubic'}

MaxNodes Positive scalar | {1000*NumberOfVariables}

MaxRLPIter Positive scalar | {100*NumberOfVariables}

MaxSQPIter Positive integer

MaxTime Positive scalar | {7200}

MeritFunction 'singleobj' | {'multiobj'}

MinAbsMax Positive scalar integer | {0}

NodeDisplayInterval Positive scalar | {20}

NodeSearchStrategy 'df' | {'bn'}
5-174



optimset
Examples This statement creates an optimization options structure called options in 
which the Display option is set to 'iter' and the TolFun option is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing 
the value of the TolX option and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure options that 
contains all the option names and default values relevant to the function 
fminbnd.

options = optimset('fminbnd')

If you only want to see the default values for fminbnd, you can simply type

optimset fminbnd

or equivalently

optimset('fminbnd')

See Also optimget

NonlEqnAlgorithm {'dogleg'} | 'lm' | 'gn', where 'lm' is 
Levenburg-Marquardt and 'gn' is Gauss-Newton.

Simplex When you set 'Simplex' to 'on' and 'LargeScale' to 
'off', fmincon uses the simplex algorithm to solve a 
contrained linear programming problem.

TolRLPFun Positive scalar | {1e-6}

TolXInteger Positive scalar | {1e-8}
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5quadprog Purpose Solve the quadratic programming problem

where H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

Syntax x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)

Description x = quadprog(H,f,A,b) returns a vector x that minimizes  
1/2*x'*H*x + f'*x subject to A*x <= b.

x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem while 
additionally satisfying the equality constraints Aeq*x = beq.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper 
bounds on the design variables, x, so that the solution is in the range 
lb <= x <= ub.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the 
optimization options specified in the structure options. Use optimset to set 
these options. 

[x,fval] = quadprog(...) returns the value of the objective function at x:

fval = 0.5*x'*H*x + f'*x.

1
2
---xTHx fTx+

x
min such that A x⋅ b≤

Aeq x⋅ beq=

lb x ub≤ ≤
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[x,fval,exitflag] = quadprog(...) returns a value exitflag that 
describes the exit condition of quadprog.

[x,fval,exitflag,output] = quadprog(...) returns a structure output 
that contains information about the optimization.

[x,fval,exitflag,output,lambda] = quadprog(...) returns a structure 
lambda whose fields contain the Lagrange multipliers at the solution x.

Input 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
passed in to quadprog. “Options” on page 5-178 provides function-specific 
details  for the options values. 

Output 
Arguments

“Function Arguments” on page 5-5 contains general descriptions of arguments 
returned by quadprog. This section provides function-specific details for 
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated. The 
following lists the values of exitflag and the corresponding reasons the 
algorithm terminated.

1 Function converged to a solution x.

3 Change in the objective function value was 
smaller than the specified tolerance.

4 Local minimizer was found.

0 Number of iterations exceeded 
options.MaxIter.

-2 Problem is infeasible.

-3 Problem is unbounded.

-4 Current search direction was not a direction of 
descent. No further progress could be made.

-7 Magnitude of search direction became too small. 
No further progress could be made.

lambda Structure containing the Lagrange multipliers at the solution x 
(separated by constraint type). The fields are
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Options Optimization options. Use optimset to set or change the values of these 
options. Some options apply to all algorithms, some are only relevant when 
using the large-scale algorithm, and others are only relevant when you are 
using the medium-scale algorithm. See “Optimization Options” on page 5-9 for 
detailed information.

The option to set an algorithm preference:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the optimization. The 
fields are

iterations Number of iterations taken

algorithm Algorithm used

cgiterations Number of PCG iterations (large-scale 
algorithm only)

firstorderopt Measure of first-order optimality (large-scale 
algorithm only)

For large-scale bound constrained problems, the 
first-order optimality is the infinity norm of 
v.*g, where v is defined as in “Box Constraints” 
on page 4-7, and g is the gradient.

For large scale problems with linear equalities 
only, the first-order optimality is the 2-norm of 
the scaled residual (z = M\r) of the reduced 
preconditioned conjugate gradient calculation. 
See “Algorithm” on page 4-5 in “Preconditioned 
Conjugate Gradients,” and also “Linearly 
Constrained Problems” on page 4-7.
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Medium-Scale and Large-Scale Algorithms. These options are used by both the 
medium-scale and large-scale algorithms:

Large-Scale Algorithm Only. These options are used only by the large-scale 
algorithm:

LargeScale Use large-scale algorithm if possible when set to 'on'. 
Use medium-scale algorithm when set to 'off'.

'on' is only a preference. If the problem has only upper 
and lower bounds; i.e., no linear inequalities or 
equalities are specified, the default algorithm is the 
large-scale method. Or, if the problem given to quadprog 
has only linear equalities; i.e., no upper and lower 
bounds or linear inequalities are specified, and the 
number of equalities is no greater than the length of x, 
the default algorithm is the large-scale method. 
Otherwise the medium-scale algorithm is used.

Diagnostics Display diagnostic information about the function to be 
minimized.

Display Level of display. 'off' displays no output; 'iter' 
displays output at each iteration; 'final' (default) 
displays just the final output.

MaxIter Maximum number of iterations allowed.

TypicalX Typical x values.
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HessMult Function handle for Hessian multiply function. For 
large-scale structured problems, this function computes 
the Hessian matrix product H*Y without actually 
forming H. The function is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional parameters 
p1,p2,... contain the matrices used to compute H*Y. 

The first argument must be the same as the third 
argument returned by the objective function fun, for 
example by

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there 
are dimensions in the problem. W = H*Y although H is not 
formed explicitly. fminunc uses Hinfo to compute the 
preconditioner. The optional parameters p1, p2, ... can be 
any additional parameters needed by hmfun. See 
“Avoiding Global Variables via Anonymous and Nested 
Functions” on page 2-19 for information on how to 
supply values for the parameters.

Note  'Hessian' must be set to 'on' for Hinfo to be 
passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for an example.
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Examples Find values of x that minimize

subject to

MaxPCGIter Y is a matrix that has the same number of rows as there 
are dimensions in the problem. W = H*Y although H is not 
formed explicitly. fminunc uses Hinfo to compute the 
preconditioner. The optional parameters p1, p2, ... can be 
any additional parameters needed by hmfun. See 
“Avoiding Global Variables via Anonymous and Nested 
Functions” on page 2-19 for information on how to 
supply values for the parameters.

Note  'Hessian' must be set to 'on' for Hinfo to be 
passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but 
Structured Hessian and Equality Constraints” on 
page 2-59 for an example.

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, 
diagonal preconditioning is used (upper bandwidth of 0). 
For some problems, increasing the bandwidth reduces 
the number of PCG iterations.

TolFun Termination tolerance on the function value. TolFun is 
used as the exit criterion for problems with simple lower 
and upper bounds (lb, ub).

TolPCG Termination tolerance on the PCG iteration. TolPCG is 
used as the exit criterion for problems with only equality 
constraints (Aeq, beq). 

TolX Termination tolerance on x.

f x( ) 1
2
---x1

2 x2
2 x1x2 2x1– 6x2––+=
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First, note that this function can be written in matrix notation as

  

where 

Enter these coefficient matrices.

H = [1 -1; -1 2] 
f = [-2; -6]
A = [1 1; -1 2; 2 1]
b = [2; 2; 3]
lb = zeros(2,1)

Next, invoke a quadratic programming routine.

[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb)

This generates the solution

x = 
0.6667
1.3333

fval =
-8.2222

exitflag =
     1
output = 
       iterations: 3
        algorithm: 'medium-scale: active-set'

x1 x2+ 2≤

x1– 2x2+ 2≤

2x1 x2+ 3≤

0 x1≤ 0 x2≤,

f x( ) 1
2
---xTHx fTx+=

H
1  1–
   
1–   2

 ,= f
 2–  

 
6–

 ,= x
 x1 

 
x2

=
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    firstorderopt: []
     cgiterations: []
lambda.ineqlin
ans =
    3.1111
    0.4444
         0
lambda.lower
ans =
     0
     0

Nonzero elements of the vectors in the fields of lambda indicate active 
constraints at the solution. In this case, the first and second inequality 
constraints (in lambda.ineqlin) are active constraints (i.e., the solution is on 
their constraint boundaries). For this problem, all the lower bounds are 
inactive.

Notes In general quadprog locates a local solution unless the problem is strictly 
convex.

Better numerical results are likely if you specify equalities explicitly, using Aeq 
and beq, instead of implicitly, using lb and ub.

If the components of x have no upper (or lower) bounds, then quadprog prefers 
that the corresponding components of ub (or lb) be set to Inf (or -Inf for lb) as 
opposed to an arbitrary but very large positive (or negative in the case of lower 
bounds) number.

Large-Scale Optimization. IBy default, quadprog uses the large-scale algorithm if 
you specify the feasible region using, but not both, of the following types of 
constraints:

• Upper and lower bounds constraints

• Linear equality constraints, in which the columns of the constraint matrix 
Aeq are linearly independent. Aeq is typically sparse. 

You cannot use inequality constraints with the large-scale algorithm. If the 
preceding conditions are not met, quadprog reverts to the medium-scale 
algorithm. 
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If you do not supply x0, or x0 is not strictly feasible, quadprog chooses a new 
strictly feasible (centered) starting point.

If an equality constrained problem is posed and quadprog detects negative 
curvature, the optimization terminates because the constraints are not 
restrictive enough. In this case, exitflag is returned with the value -1, a 
message is displayed (unless the options Display option is 'off'), and the x 
returned is not a solution but a direction of negative curvature with respect to 
H.

For problems with simple lower and upper bounds (lb, ub), quadprog exits 
based on the value of TolFun. For problems with only equality constraints (Aeq, 
beq), the exit is based on TolPCG. Adjust TolFun and TolPCG to affect your 
results. TolX is used by both types of problems.

Algorithm Large-Scale Optimization. The large-scale algorithm is a subspace trust-region 
method based on the interior-reflective Newton method described in [1]. Each 
iteration involves the approximate solution of a large linear system using the 
method of preconditioned conjugate gradients (PCG). See “Trust-Region 
Methods for Nonlinear Minimization” on page 4-2 and “Preconditioned 
Conjugate Gradients” on page 4-5. 

Medium-Scale Optimization. quadprog uses an active set method, which is also a 
projection method, similar to that described in [2]. It finds an initial feasible 
solution by first solving a linear programming problem. This method is 
discussed in the “Standard Algorithms” chapter.

Diagnostics Large-Scale Optimization. The large-scale method does not allow equal upper and 
lower bounds. For example, if lb(2) == ub(2), then quadprog gives the error

Equal upper and lower bounds not permitted in this large-scale 
method.
Use equality constraints and the medium-scale method instead.

If you only have equality constraints you can still use the large-scale method. 
But if you have both equalities and bounds, you must use the medium-scale 
method.

Medium-Scale Optimization. When the solution is infeasible, quadprog gives this 
warning:
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Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, quadprog produces a result that minimizes the worst case 
constraint violation.

When the equality constraints are inconsistent, quadprog gives this warning

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Unbounded solutions, which can occur when the Hessian H is negative 
semidefinite, can result in

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, quadprog returns a value of x that satisfies the constraints.

Limitations At this time the only levels of display, using the Display option in options, are 
'off' and 'final'; iterative output using 'iter' is not available.

The solution to indefinite or negative definite problems is often unbounded (in 
this case, exitflag is returned with a negative value to show that a minimum 
was not found); when a finite solution does exist, quadprog might only give 
local minima, because the problem might be nonconvex.

Large-Scale Optimization. The linear equalities cannot be dependent (i.e., Aeq 
must have full row rank). Note that this means that Aeq cannot have more rows 
than columns. If either of these cases occurs, the medium-scale algorithm is 
called instead. See Table 2-4, Large-Scale Problem Coverage and 
Requirements, on page 2-42, for more information on what problem 
formulations are covered and what information must be provided.

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a 
Quadratic Function Subject to Bounds on some of the Variables,” SIAM 
Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.

[2] Gill, P. E. and W. Murray, and M.H. Wright, Practical Optimization, 
Academic Press, London, UK, 1981.
5-185



quadprog
5-186



Index
Symbols
||C times x minus d|| squared 1-4

A
active constraints

linprog example 5-129
lsqlin example 5-154
quadprog example 5-184

active set method
fmincon medium-scale algorithm 5-63
linprog medium-scale algorithm 5-129
lsqlin medium-scale algorithm 5-154
quadprog medium-scale algorithm 5-185
sequential quadratic programming (SQP) 3-32

attainment factor 5-42
axis crossing. See zero of a function

B
banana function 3-4
BFGS formula 3-6

fmincon medium-scale algorithm 5-63
fminunc medium-scale algorithm 5-89

bintprog 5-26
bisection search 5-122
bound constraints, large-scale 4-7
box constraints. See bound constraints

C
centering parameter 4-15
CG. See conjugate gradients
complementarity conditions 4-14
complex variables 5-143, 5-165
conjugate gradients 4-3
constrained minimization 5-50
large-scale example 2-54, 2-58
medium-scale example 2-11

constraints
linear 4-7, 5-63, 5-73
positive 2-18

continuous derivative
gradient methods 3-4

convex problem 3-27
curve-fitting 5-134

categories 2-5
functions that apply 5-3

D
data-fitting 5-134

categories 2-5
functions that apply 5-3

dense columns, constraint matrix 4-15
DFP formula 5-89
direction of negative curvature 4-3
discontinuities 2-93
discontinuous problems 5-78, 5-90
discrete variables 2-94
dual problem 4-13
duality gap 4-14

E
ε-constraint method 3-45
equality constraints

dense columns 2-73
medium-scale example 2-17

equality constraints inconsistent warning, 
quadprog 5-186

equality constraints, linear
large-scale 4-7
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Ind
equation solving
categories 2-5
functions that apply 5-2

error, Out of memory. 2-49

F
f(x) = one half ||C times x + d|| squared 4-12
feasibility conditions 4-14
feasible point, finding 3-34
fgoalattain 5-33

example 2-37
fixed variables 4-16
fixed-step ODE solver 2-33
fminbnd 5-45
fmincon 5-50

large-scale example 2-54, 2-58
medium-scale example 2-11

fminimax 5-65
example 2-33

fminsearch 5-75
fminunc 5-80

large-scale example 2-51
medium-scale example 2-10
warning messages 2-93

fseminf 5-92
fsolve 5-106

large-scale Jacobian 2-44
medium-scale analytic Jacobian 2-23
medium-scale finite difference Jacobian 2-26

fsolve medium-scale default 5-115
function arguments 5-5
function discontinuities 2-93
functions

grouped by category 5-2
fzero 5-118
fzmult 5-123
ex-2
G
gangstr 5-124
Gauss-Newton method (large-scale)

nonlinear least-squares 4-10
Gauss-Newton method (medium-scale)

implementation, nonlinear equations 3-25
implementation, nonlinear least squares 3-21
least-squares optimization 3-18
solving nonlinear equations 3-23

global minimum 2-92
goal attainment 3-47, 5-33

example 2-37
goaldemo 5-41
golden section search 5-48
gradient checking, analytic 2-16
gradient examples 2-14
gradient function 2-7
gradient methods

continuous first derivative 3-4
quasi-Newton 3-6
unconstrained optimization 3-4

H
Hessian modified message 3-31
Hessian modified twice message 3-31
Hessian sparsity structure 2-53
Hessian update 3-10, 3-30
Hessian updating methods 3-6

I
inconsistent constraints 5-132
indefinite problems 5-186
infeasible message 3-32
infeasible optimization problems 2-93
infeasible problems 5-64



Index
infeasible solution warning
linprog 5-132
quadprog 5-185

inline objects 2-90
input arguments 5-5
integer variables 2-94
interior-point linear programming 4-13
introduction to optimization 3-3
iterative display 2-82

J
Jacobian

analytic 2-23
finite difference 2-26
large-scale nonlinear equations 2-44

Jacobian sparsity pattern 2-47

K
Kuhn-Tucker equations 3-27

L
Lagrange multipliers

large-scale linear programming 4-16
large-scale functionality coverage 2-41
large-scale methods 4-1

demos 5-3
examples 2-40

least squares 3-19
categories 2-5
functions that apply 5-3

Levenberg-Marquardt method 3-19
lsqcurvefit medium-scale default 5-143
lsqnonlin medium-scale default 5-164
search direction 3-20

line search
fminunc medium-scale default 5-89
fsolve medium-scale default 5-115
lsqcurvefit medium-scale default 5-143
lsqnonlin medium-scale default 5-164
unconstrained optimization 3-8

line search strategy 2-7
linear constraints 4-7, 5-63, 5-73
linear equations solve 5-115
linear least squares

constrained 5-146
large-scale algorithm 4-12
large-scale example 2-70
nonnegative 5-167
unconstrained 5-154

linear programming 5-125
implementation 3-35
large-scale algorithm 4-13
large-scale example 2-72, 2-73
problem 3-3

linprog 5-125
large-scale example 2-72, 2-73

LIPSOL 4-13
lower bounds 2-13
lsqcurvefit 5-134
lsqlin 5-146

large-scale example 2-70
lsqnonlin 5-156

convergence 2-95
large-scale example 2-47
medium-scale example 2-30

lsqnonneg 5-167

M
maximization 2-18
medium-scale methods 3-1
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demos 5-4
Mehrotra’s predictor-corrector algorithm 4-13, 

4-14
merit function 3-35
minimax examples 2-33
minimax problem, solving 5-65
minimization

categories 2-3
functions that apply 5-2

multiobjective optimization 3-41, 5-33
examples 2-27

N
NCD. See Nonlinear Control Design
negative curvature direction 4-3, 4-5
negative definite problems 5-186
Nelder and Mead 3-4
Newton direction

approximate 4-3
Newton’s method

systems of nonlinear equations 3-23
unconstrained optimization 3-4

no update message 3-32
nonconvex problems 5-186
noninferior solution 3-42
Nonlinear Control Design (NCD) Blockset 2-33
nonlinear data-fitting 5-156
nonlinear equations

Newton’s method 3-23
nonlinear equations (large-scale)

example with Jacobian 2-44
solving 5-106

nonlinear equations (medium-scale) 3-23
analytic Jacobian example 2-23
finite difference Jacobian example 2-26
Gauss-Newton method 3-23
ex-4
solving 5-106
trust-region dogleg method 3-23

nonlinear least squares 3-21, 5-134, 5-156
large-scale algorithm 4-10
large-scale example 2-47

nonlinear programming 3-3
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objective function 2-3

return values 2-95
optimality conditions linear programming 4-14
optimget 5-171
optimization

functions by category 5-2
getting to a global minimum 2-92
handling infeasibility 2-93
helpful hints 2-92
introduction 3-3
objective function return values 2-95
troubleshooting 2-92
unconstrained 3-4

optimization parameters structure 2-76, 5-171, 
5-172

optimset 5-172
options parameters

descriptions 5-9
possible values 5-173
utility functions 5-3

Out of memory. error 2-49
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output display 2-79
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large-scale algorithms 2-82
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PCG. See preconditioned conjugate gradients
preconditioned conjugate gradients 4-3, 4-5, 4-15

algorithm 4-5
preconditioner 2-46, 4-5

banded 2-54
predictor-corrector algorithm 4-14
preprocessing

linear programming 4-13, 4-16
primal problem 4-13
primal-dual algorithm 4-14
primal-dual interior-point 4-13
projection method

quadprog medium-scale algorithm 5-185
sequential quadratic programming (SQP) 3-32

Q
quadprog 5-176

large-scale example 2-63
quadratic programming 3-3, 5-63, 5-176

large-scale algorithm 4-11
large-scale example 2-63

quasi-Newton method
implementation 3-10

quasi-Newton methods 3-6
fminunc medium-scale algorithm 5-89
unconstrained optimization 3-6

R
reflective line search 4-11
reflective steps 4-8, 4-9
residual 3-17
revised simplex algorithm 3-36
Rosenbrock’s function 3-4

S
S 4-10
sampling interval 5-99
secular equation 4-3
semi-infinite constraints 5-92
Sherman-Morrison formula 4-15
signal processing example 2-36
simple bounds 2-13
simplex search 5-78

unconstrained optimization 3-4
Simulink, multiobjective example 2-27
singleton rows 4-16
solving nonlinear systems of equations 3-23
sparsity pattern Jacobian 2-47
sparsity structure, Hessian 2-53
SQP method 3-28, 3-32, 5-63
steepest descent 5-89
stopping criteria, large-scale linear programming 

4-16
structural rank 4-16
subspace

determination of 4-3
subspace, two-dimensional 4-3
systems of nonlinear equations

solving 5-106

T
trust region 4-2
trust-region dogleg method (medium-scale)

implementation for nonlinear equations 3-25
systems of nonlinear equations 3-23

two-dimensional subspace 4-3

U
unbounded solutions warning
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linprog 5-132
quadprog 5-186

unconstrained minimization 5-75, 5-80
large-scale example 2-51
medium-scale example 2-10
one dimensional 5-45

unconstrained optimization 3-4
upper bounds 2-13

V
variable-step ODE solver 2-33

W
warning

equality constraints inconsistent, quadprog 
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infeasible solution, linprog 5-132
infeasible solution, quadprog 5-185
stuck at minimum, fsolve 5-116
unbounded solutions, linprog 5-132
unbounded solutions, quadprog 5-186
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weighted sum strategy 3-43

Z
zero curvature direction 4-5
zero finding 5-106
zero of a function, finding 5-118
Index-6


	Getting Started
	What Is the Optimization Toolbox?
	Optimization Example
	The Problem
	Setting Up the Problem
	Finding the Solution
	More Examples


	Tutorial
	Introduction
	Problems Covered by the Toolbox
	Using the Optimization Functions
	Medium- and Large-Scale Algorithms

	Examples That Use Standard Algorithms
	Unconstrained Minimization Example
	Nonlinear Inequality Constrained Example
	Constrained Example with Bounds
	Constrained Example with Gradients
	Gradient Check: Analytic Versus Numeric
	Equality Constrained Example
	Maximization
	Greater-Than-Zero Constraints
	Avoiding Global Variables via Anonymous and Nested Functions
	Nonlinear Equations with Analytic Jacobian
	Nonlinear Equations with Finite-Difference Jacobian
	Multiobjective Examples

	Large-Scale Examples
	Problems Covered by Large-Scale Methods
	Nonlinear Equations with Jacobian
	Nonlinear Equations with Jacobian Sparsity Pattern
	Nonlinear Least-Squares with Full Jacobian Sparsity Pattern
	Nonlinear Minimization with Gradient and Hessian
	Nonlinear Minimization with Gradient and Hessian Sparsity Pattern
	Nonlinear Minimization with Bound Constraints and Banded Preconditioner
	Nonlinear Minimization with Equality Constraints
	Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints
	Quadratic Minimization with Bound Constraints
	Quadratic Minimization with a Dense but Structured Hessian
	Linear Least-Squares with Bound Constraints
	Linear Programming with Equalities and Inequalities
	Linear Programming with Dense Columns in the Equalities

	Default Options Settings
	Changing the Default Settings

	Displaying Iterative Output
	Output Headings: Medium-Scale Algorithms
	Output Headings: Large-Scale Algorithms

	Calling an Output Function Iteratively
	Creating the Output Function
	Running the Example

	Optimizing Anonymous Functions Instead of M-Files
	Typical Problems and How to Deal with Them
	Selected Bibliography

	Standard Algorithms
	Optimization Overview
	Unconstrained Optimization
	Quasi-Newton Methods
	Line Search

	Quasi-Newton Implementation
	Hessian Update
	Line Search Procedures

	Least-Squares Optimization
	Gauss-Newton Method
	Levenberg-Marquardt Method
	Nonlinear Least-Squares Implementation

	Nonlinear Systems of Equations
	Gauss-Newton Method
	Trust-Region Dogleg Method
	Nonlinear Equations Implementation

	Constrained Optimization
	Sequential Quadratic Programming (SQP)
	Quadratic Programming (QP) Subproblem
	SQP Implementation
	Simplex Algorithm

	Multiobjective Optimization
	Introduction
	Goal Attainment Method
	Algorithm Improvements for Goal Attainment �Method

	Selected Bibliography

	Large-Scale Algorithms
	Trust-Region Methods for Nonlinear Minimization
	Preconditioned Conjugate Gradients
	Linearly Constrained Problems
	Linear Equality Constraints
	Box Constraints

	Nonlinear Least-Squares
	Quadratic Programming
	Linear Least-Squares
	Large-Scale Linear Programming
	Main Algorithm
	Preprocessing

	Selected Bibliography

	Function Reference
	Functions — Categorical List
	Minimization
	Equation Solving
	Least Squares (Curve Fitting)
	Utility
	Demos of Large-Scale Methods
	Demos of Medium-Scale Methods

	Function Arguments
	Input Arguments
	Output Arguments

	Optimization Options
	Output Function

	Functions — Alphabetical List
	bintprog
	fgoalattain
	fminbnd
	fmincon
	fminimax
	fminsearch
	fminunc
	fseminf
	fsolve
	fzero
	fzmult
	gangstr
	linprog
	lsqcurvefit
	lsqlin
	lsqnonlin
	lsqnonneg
	optimget
	optimset
	quadprog


	Index

